Answer:
T₂ = 49.3°C
Explanation:
Applying law of conservation of energy to the system we get the following equation:
Energy Supplied by Resistor = Energy Absorbed by Tank + Energy Absorbed by Water
E = mC(T₂ - T₁) + m'C'(T'₂ - T'₁)
where,
E = Energy Supplied by Resistor = 100 KJ = 100000 J
m = mass of copper tank = 13 kg
C = Specific Heat of Copper = 385 J/kg.°C
T₂ = Final Temperature of Copper Tank
T₁ = Initial Temperature of Copper Tank = 27°C
T'₂ = Final Temperature of Water
T'₁ = Initial Temperature of Water = 50°C
m' = Mass of Water = 4 kg
C' = Specific Heat of Water = 4179.6 K/kg.°C
Since, the system will come to equilibrium finally. Therefor: T'₂ = T₂
Therefore,
(100000 J) = (13 kg)(385 J/kg.°C)(T₂ - 27°C) + (4 kg)(4179.6 J/kg.°C)(T₂ - 50°C)
100000 J = (5005 J/°C)T₂ - 135135 J + (16718.4 J/°C)T₂ - 835920 J
100000 J + 135135 J + 835920 J = (21723.4 J/°C)T₂
(1071055 J)/(21723.4 J/°C) = T₂
T₂ = 49.3°C
A 66-N ⋅ m torque acts on a wheel with a moment of inertia 175 kg ⋅ m2. If the wheel starts from rest, how long will it take the wheel to make one revolution?
Answer:
t = 5.77 s
Explanation:
This exercise will use Newton's second law for rotational motion
τ = I α
α = τ / I
α = 66/175
α = 0.3771 rad/s²
now we can use the rotational kinematics relations, remember that all angles must be in radians
θ = 1 rev = 2π radians
θ = w₀ t + ½ α t²
as the wheel starts from rest w₀ = 0
t = √ (2θ/α)
let's calculate
t = √ (2 2π / 0.3771)
t = 5.77 s
In the absence of a gravitational field, you could determine the mass of an object (of unknown composition) by:
A) applying a known force and measuring it's acceleration.
B) measuring the volume.
C) weighing it.
Answer:
A) By applying a known force, and measuring it's acceleration.
Explanation:
This is actually something that astronauts do in space as a mathmatical exercise when calculating the mass of an object since F = m × a.
Once the force, and acceleration are applied, the only unknown is the mass which can be solved by dividing force over acceleration. This is because inertial mass is equal to gravitational mass.
See Conceptual Example 6 to review the concepts involved in this problem. A 12.0-kg monkey is hanging by one arm from a branch and swinging on a vertical circle. As an approximation, assume a radial distance of 86.4 cm is between the branch and the point where the monkey's mass is located. As the monkey swings through the lowest point on the circle, it has a speed of 1.33 m/s. Find (a) the magnitude of the centripetal force acting on the monkey and (b) the magnitude of the tension in the monkey's arm.
Answer:
(a) 24.56 N
(b) 142.28 N
Explanation:
(a)
The designation assigned to something like the net force pointed toward the middle including its circular route seems to be the centripetal force. The net stress only at lowest point constitutes of the strain throughout the arm projecting upward towards the middle as well as the weight pointed downwards either backwards from the center.
The centripetal function is generated from either scenario by Equation:
⇒ [tex]Fc = \frac{mv^2}{r}[/tex]
On putting the values, we get
⇒ [tex]=\frac{12\times 1.33^2}{0.864}[/tex]
⇒ [tex]=24.56 \ N[/tex]
(b)
Use T to denote whatever arm stress we can get at the bottom including its circle:
⇒ [tex]Fc = T - mg =\frac{ mv^2}{r}[/tex]
⇒ [tex]T = mg + Fc[/tex]
⇒ [tex]=12\times 9.81+24.56[/tex]
⇒ [tex]=142.28 \ N[/tex]
Calculate the force a 75 kg high jumper must exert in order to produce an acceleration that is 3.2 times the acceleration due to gravity.
Answer:
Explanation
According to Newton's second law of motion,
F = ma
m is the mass
a is the acceleration
If the acceleration is 3.2 times the acceleration due to gravity, then a = 3.2g
The formula becomes;
F = m(3.2g)
F = 3.2mg
m= 75kg
g = 9.81m/s²
F = 3.2(75)(9.81)
F = 2,354.4N
Hence the force exerted by the jumper is 2,354.4N
Density is calculated by dividing the mass of an object by its volume. The Sun has a mass of 1.99×1030 kg and a radius of 6.96×108 m. What is the average density of the Sun?
Answer:
Density is calculated by dividing the mass of an object by its volume. The Sun has a mass of 1.99×1030 kg and a radius of 6.96×108 m. What is the average density of the Sun?
Sometimes we will want to write vectors in terms of a coordinate grid. To show a vector points
horizontally (along the x-axis), place an x after the magnitude of the vector. To show a vector point
vertically (along the y-axis), place a y after the magnitude.
4) Using the notation above,
i. How would you write d1?
ii. How would you write d2?
iii. How would you write dtotal?
d1=(0,5)
d2=(5,5)
Answer:
III) [tex]d_{1}+ d_{2}=d_{t}[/tex]
Explanation:
I) coordinate (0,5) is the head for [tex]d_{1}[/tex] I will put the tail coordinate as (0,0) but it could be any other number in the x just not in the 5 with the the y being any other value.
II) coordinate (5,5) is the head for [tex]d_{2}[/tex] the tail needs to be in the head of [tex]d_{1}[/tex] being (0,5)
III) coordinates for [tex]d_{t}[/tex] is connecting the tail from [tex]d_{1}[/tex] and the head of [tex]d_{2}[/tex] making it (0,0)[tex](tail)[/tex] and (0,5)[tex](head)[/tex] and is written as [tex]d_{1}+ d_{2}=d_{t}[/tex]
(i) using coordinate grid notation to represent d₁, d₁ = 5y
(ii) using coordinate grid notation to represent d₂, d₂ = 5x + 5y
(ii) The sum of d₁ and d₂ is written as 5x + 10y
In order to show the horizontal direction of a vector, we will place x after the magnitude of the vector.
Also, to show the vertical direction of a vector, we will place a y after the magnitude of the vector.
(i) Using coordinate grid to represent d₁ = (0, 5)
[tex]d_1 = 0(x) + 5(y)\\\\d_1 = 5y[/tex]
(ii) Using coordinate grid to represent d₂ = (5, 5)
[tex]d_2 = 5x + 5y[/tex]
(iii) The total vector is written as;
[tex]d_1 + d_2 = 5y + (5x + 5y)\\\\d_1 + d_2 = 5y + 5x + 5y\\\\d_1 + d_2 = 5x + 10y[/tex]
Learn more here: https://brainly.com/question/17212749
Find the work done by a 75.0 kg person in climbing a 2.50 m flight of stairs at a constant speed.
Answer:
1,839.375 Joules
Explanation:
Work is said to be done is the force applied to an object cause the object to move through a distance.
Workdone = Force * Distance
Workdone = mass * acceleration due to gravity * distance
Given
Mass = 75.0kg
acceleration due to gravity = 9.81m/s²
distance = 2.50m
Substitute the given parameters into the formula:
Workdone = 75.0*9.81*2.50
Workdone = 1,839.375Joules
Hence the workdone is 1,839.375 Joules
which statement is correct about the strength of forces?
-Electrostatic forces are exactly 10 times stronger than gravitational forces.
-Electrostatic forces are exactly 10 times weaker than gravitational forces.
-Electrostatic forces are trillions of times stronger than gravitational forces.
-Electrostatic forces are trillions of times weaker than gravitational forces.
Answer:
Thanks!!!!! adding this so it doesn’t get deleted.
Explanation:
1. Electrostatic forces are trillions of times stronger than gravitational forces. 2. normal force and friction 3. contact forces 4. The electrostatic forces from the contact of the hands with the paper causes the paper molecules to separate. 5. The electrostatic forces between the molecules of the board prevent the force of gravity from breaking the board apart.
The correct statement over here is that electrostatic forces are trillions of times stronger than gravitational forces. Hence, option C is correct.
What is an Electrostatic Force?One of the basic forces in the cosmos is electrostatic force. In the universe, there are four basic forces. These include gravitational force, electromagnetic force, weak nuclear force, and strong nuclear force. Under the umbrella of electromagnetic force is electrostatic force. Two charges placed apart are subject to the electrostatic force. The size of each charged and the separation between them determines how much electrostatic force there will be.
When two charges of the same type are brought together, whether positive or negative, they repel one another. It is known as the electrostatic force of repelling when it operates among two charges that are similar.
Therefore, the electrostatic forces are trillions of times stronger than the gravitational forces.
To know more about Electrostatic Force:
https://brainly.com/question/9774180
#SPJ2
Which statement best describes an atom? (2 points)
оа
Protons and neutrons grouped in a specific pattern
Ob
Protons and electrons spread around randomly
ос
A group of protons and neutrons that are surrounded by electrons
Od
A ball of electrons and neutrons surrounded by protons
Answer:
A group of protons and neutrons that are surrounded by electrons I think that's the answer...
Explanation:
Weight of a body becomes greater at the pole than that at the equator . why ?
Hollywood and video games often depict the bad guys being "blown away" when they’re shot by a bullet (i.e. once hit, their feet leave the ground and they fly backwards). Assuming that even if a handgun cartridge did generate enough momentum for the bullet to do this, why is it still nonsense on-screen?
Answer:
Taking a look at Newton's third law of motion which states "for every force exerted, their is an opposite force equal in magnitude and opposite in direction on the first force".
Similarly if a bullet had enough forces behind it to hurl someone through the air when they were hit, a similar force would act on the person holding the gun that fired the bullet.
What we load into the gun is called a 'cartridge' Each piece is composed of four basic substance the casing, the bullet, the primer, and the powder.
The primer explodes lighting the powder which causes a buildup of pressure behind the bullet. This powder can be used in rifle cartages because the bullet chamber is designed to withstand greater pressures.
It is difficult in practice to measure the forces within a gun bagel, but the one easily measured parameter is the velocity with which the bullet exits muzzle velocity, therefore assuming that even if a handgun cartridge which generate enough momentum for the bullet to do this, it is still nonsense on screen in Hollywood and video.
What are the standard international (si) units of distance
Answer:
meter
Explanation:
Answer: The International System of Units is a system of measurement based on 7 base units
Explanation: the metre, kilogram, second, ampere, Kelvin, mole, and candela. These base units can be used in combination with each other.
for an emitted wavelength of 500 nanometers and a redshift of 0.4 what will be the observed wavelength g
Answer:
The observed wavelength is [tex] \lambda = 700nm[/tex] (color - Red)
Explanation:
From the question we are told that
The wavelength of the emitter is [tex]\lambda_ e = 500 nm = 500 *10^{-9} \ m[/tex]
The redshift is R = 0.4
Generally red shift is mathematically represented as
[tex]R = \frac{ \lambda - \lambda_e }{\lambda_e}[/tex]
=> [tex]0.4 = \frac{ \lambda - 500 *10^{-9} }{500 *10^{-9} }[/tex]
=> [tex] \lambda - 500*10^{-9} = 200*10^{-9} [/tex]
=> [tex] \lambda = 700 *10^{-9}[/tex]
=> [tex] \lambda = 700nm[/tex]
A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 98 m and acquired a velocity of The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground. The upward acceleration of the rocket during the burn phase is closest to:
29 m/s2
31 m/s2
33 m/s2
30 m/s2
32 m/s2
Explanation:
The question is incomplete. Here is the complete question.
A toy rocket is launched vertically from ground level (y = 0 m), at time t = 0.0 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 98 m and acquired a velocity of 30m/s. The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground. The upward acceleration of the rocket during the burn phase is closest to...
Given
initial velocity of rocket u = 0m/s
final velocity of rocket = 30m/s
Height reached by the rocket = 98m
Required
upward acceleration of the rocket
Using the equation of motion below to get the acceleration a:
[tex]v^2 = u^2+2as\\30^2 = 0^2 + 2(a)(98)\\900 = 196a\\a = \frac{900}{196}\\a = 4.59m/s^2[/tex]
Hence upward acceleration of the rocket during the burn phase is closest to 5m/s²
Note that the velocity used in calculation was assumed.
The scientific method is the only way of learning about Nature used by scientist today *
A. true
B. false
Answer:
false
Explanation:
Time it takes stone to fall from the height of 80 m is approximately equal to *
A. 1 s
B. 2 s
C. 4 s
D. 8 s
Answer:
D
Explanation:
Answer:
c.4s
Explanation:
cameron drives his car 15 km north. He stops for lunch and then drives 12 km south. What is his displacement?
Answer:
Displacement is 3 km North
Explanation:
Is it true or false that the displacement always equals the product of the average velocity and the time interval?
Answer:
True.
Explanation:
Applying the definition of average velocity, we know that we can always write the following expression:[tex]v_{avg} = \frac{\Delta x}{\Delta t}[/tex] (1)
By definition, Δx is just the displacement, and Δt is the time interval.So, just rearranging terms in (1), we get:[tex]\Delta x} = v_{avg}* {\Delta t}[/tex]
ionic bonds form when electrons?
Answer:
when the electron transferred permanently to another atom
A 126 N force is applied at an angle of 25.00 to a 8.50 kg block pressed against a rough vertical wall and the block slides down the wall at constant velocity. Calculate the coefficient of kinetic friction between the block and the wall.
Answer:
μk = 0.58
Explanation:
If the block is sliding down at constant speed, this means that no net force is acting upon it in the vertical direction.As the block is pressed on the wall, this means that it doesnt accelerate in the horizontal direction either, so no net force acts upon it in this direction also.In this direction, we have only two forces acting, equal and opposite each other, one is the normal force (exerted by the wall) and the other is the horizontal component of the applied force.If the applied force forms an angle of 25º with the wall (which is vertical), this means that we can get its projection along the horizontal direction, using simple trigonometry , as follows:[tex]F_{apph} = F_{app} * sin\theta = 126 N * sin 25 = 53.3 N[/tex]
⇒ [tex]F_{n} = - F_{apph} = -53.3 N[/tex]
In the vertical direction, we have three forces acting on the block: the weight pointing downward, the kinetic friction force (as we know that the block is sliding), and the vertical component of the applied force, in the same direction as the friction one.As we have already said, the sum of these forces must be 0.[tex]F_{g} + F_{appv} + F_{ff} = 0 (1)[/tex] where Fg is the weight of the block, Fappv is the vertical component of the applied force, and Fff is the kinetic friction force.Replacing these forces by their mathematical expressions, we have:[tex]F_{g} = m_{b} * g = 8.5 Kg * (-9.8 m/s2) = -83.3 N[/tex]
[tex]F_{appv} = F_{app}* cos\theta = 126 N * cos 25 = 114.2 N[/tex]
[tex]F_{ff} = \mu_{k}* F_{n} =\mu_{k} * (-53.3 N)[/tex]
Replacing in (1), and solving for μk, we finally get:μk = 0.58
A man with a mass of 86.5 kg stands up in a 61-kg canoe of length 4.00 m floating on water. He walks from a point 0.75 m from the back of the canoe to a point 0.75 m from the front of the canoe. Assume negligible friction between the canoe and the water. How far does the canoe move?
Answer:
The displacement of the canoe is 1.46 m
Explanation:
Given that,
Mass of canoe = 61 kg
Mass of man = 86.5 kg
Length = 4 m
Let the the displacement of the canoe is x'
We need to calculate the displacement of the man
Using formula of displacement
[tex]x=x_{2}-x_{1}[/tex]
Put the value into the formula
[tex]x=4-(0.75+0.75)[/tex]
[tex]x=2.5\ m[/tex]
We need to calculate the displacement of the canoe
Using conservation of momentum
[tex]M_{m}v_{m}=(M_{c}+M_{m})v_{c}[/tex]
[tex]M_{m}\dfrac{x}{t}=(M_{c}+M_{m})\dfrac{x'}{t}[/tex]
[tex]86.5\times2.5=(61+86.5)\times x'[/tex]
[tex]x'=\dfrac{86.5\times2.5}{61+86.5}[/tex]
[tex]x'=1.46\ m[/tex]
Hence, The displacement of the canoe is 1.46 m
Radio station KBOB broadcasts at a frequency of 85.7 MHz on your dial using radio waves that travel at 3.00 × 108 m/s. Since most of the station's audience is due south of the transmitter, the managers of KBOB don't want to waste any energy broadcasting to the east and west. They decide to build two towers, transmitting in phase at exactly the same frequency, aligned on an east-west axis. For engineering reasons, the two towers must be AT LEAST 10.0 m apart. What is the shortest distance between the towers that will eliminate all broadcast power to the east and west?
Answer:
12.5 m
Explanation:
The first thing we would do is to calculate the wavelength. To do this, we use the formula
v = fλ, where
v = wave speed
f = frequency
λ = wavelength
If we make wavelength the formula, we have
wavelength = speed / frequency
Now, we substitute the values we had been given and we have
wavelength = (3 * 10^8 m/s) / (85.7 * 10^6 Hz) wavelength = 3.50 m
half of this said wavelength will be
= 3.50 / 2
= 1.75 m
As a result of the engineering constraints with the towers being more than 10 m apart, the distance can't be 1.75 m and as such, it has to be a multiple of 1.75m. So we say,
(10 / 1.75) = 5.7
So the separation will have to be 7 half wavelengths
= (7 * 1.75) = 12.5 m
what is the meaning of relative as a noun?
Answer:
noun. a person who is connected with another or others by blood or marriage. something having, or standing in, some relation or connection to something else. something dependent upon external conditions for its specific nature, size, etc. (opposed to absolute).
It takes a minimum distance of 48.96 m to stop a car moving at 12.0 m/s by applying the brakes (without locking the wheels). Assume that the same frictional forces apply and find the minimum stopping distance when the car is moving at 25.0 m/s.
Answer:
102 m
Explanation:
Given that It takes a minimum distance of 48.96 m to stop a car moving at 12.0 m/s by applying the brakes (without locking the wheels). Assume that the same frictional forces apply and find the minimum stopping distance when the car is moving at 25.0 m/s.
Let the stopping distance be equal to S.
According to the definition of speed,
Speed = distance / time.
make time the subject of the formula
Time = distance / speed
then, the equivalent time is:
48.96 / 12 = S / 25
Cross multiply
12S = 48.96 x 25
12S = 1224
S = 1224 / 12
S = 102 m
Therefore, the stopping distance is 102 m
as a result, the net electric force experienced by each negatively charged particle is reduced to F/2. The value of q is
Answer:
The value of q is [tex]\dfrac{Q}{8}[/tex]
Explanation:
Given that,
Each charge = -Q
Distance between charges = L
Reduced force = [tex]\dfrac{F}{2}[/tex]
Suppose, Two particles each with a charge -Q are fixed a distance L apart as shown above. Each particle experiences a net electric force F. A particle with a charge +q is now fixed midway between the original two particles.
We know that,
The force on each end is
[tex]F=\dfrac{kQ^2}{L^2}[/tex]...(I)
If the charge q is placed at mid point then
The force on each end charge is
[tex]\dfrac{F}{2}=F+F'[/tex]....(II)
We need to calculate the value of q
Using equation (II)
[tex]\dfrac{F}{2}=F+F'[/tex]
Put the value of F into the formula
[tex]\dfrac{\dfrac{kQ^2}{L^2}}{2}=k\dfrac{Q^2}{L^2}+k\dfrac{q\times(-Q)}{(\dfrac{L}{2})^2}[/tex]
[tex]\dfrac{kq(-Q)}{(\dfrac{L}{2})^2}=-\dfrac{kQ^2}{2L^2}[/tex]
[tex]\dfrac{q}{\dfrac{1}{4}}=\dfrac{Q}{2}[/tex]
[tex]q=\dfrac{Q}{8}[/tex]
Hence, The value of q is [tex]\dfrac{Q}{8}[/tex]
Velocity which stone gains when falling from height of 80 m is approximately equal to *
A. 0
B. 1 m/s
C. 8 m/s
D. 40 m/s
E. 300 m/s
Answer:
40
Explanation:
The current is suddenly turned off. How long does it take for the potential difference between points a and b to reach one-half of its initial value
Complete Question
The complete question is shown on the first uploaded image
Answer:
Explanation:
From the question we are told that
The original voltage is [tex]V_o[/tex]
The new voltage is [tex]V =\frac{V_o}{2}[/tex]
The capacitance is [tex]C = 150\ nF = 150 *10^{-9} \ F[/tex]
The first resistance is [tex]R_i = 26 \Omega[/tex]
The second resistance is [tex]R_E = 200 \Omega[/tex]
Generally the equivalent resistance is
[tex]R_e = R_1 + R_E[/tex]
=> [tex]R_e = 26 +200 [/tex]
=> [tex]R_e = 226 \ \Omega [/tex]
Generally the time constant is mathematically represented as
[tex]\tau = RC[/tex]
=> [tex]\tau = 226 * 150 *10^{-9}[/tex]
=> [tex]\tau = 3.39 *10^{-5} \ s [/tex]
Generally the voltage is mathematically represented as
[tex]V = V_o e^{-\frac{t}{\tau} }[/tex]
=> [tex]\frac{V_o}{2} = V_o e^{-\frac{t}{\tau} }[/tex]
=> [tex]0.5 = e^{-\frac{t}{\tau} }[/tex]
=> [tex]ln(0.5) = {-\frac{t}{ 3.39 *10^{-5} } }[/tex]
=> [tex]ln(0.5) * 3.39 *10^{-5} = -t [/tex]
=> [tex]t = 2.35*10^{-5} \ s [/tex]
How do compounds differ from mixtures such as lemonade
Answer:
A mixture is a combination of two or more substances in any proportion. This is different from a compound, which consists of substances in fixed proportions. ... The lemonade pictured above is a mixture because it doesn't have fixed proportions of ingredients.
Explanation:
A single living thing.
Answer:
What do you mean ma´am/sir?
Explanation:
Part D
Next, we'll examine magnetic force. Bring the ends of your two magnets together. Explore the three
possible combinations. In two of the combinations, the two ends are the same. In one combination, the
two ends are different. Describe the force you feel in each combination
Answer:
i. The magnetic force of repulsion.
ii. The magnetic force of attraction.
Explanation:
A magnet is a material that has the attraction and repulsion capability. Magnets has two poles, north and south, thus would attract or repel another magnet in its neighborhood. It can either be a permanent or temporal magnet, and attracts ferrous metals.
i. In the case of two combinations where two ends are the same, it could be observed that the two ends (poles) repels each other. Thus since like poles repels, magnetic force of repulsion is felt.
ii. In the case of one combination in which the two ends are different, the two ends (poles) attract. Since unlike poles attracts, magnetic force of attraction is observed.