What is 6 1/2 + 3 1/2

Answers

Answer 1

Answer: 10

Step-by-step explanation:

6 1/2 + 3 1/2
13/2 + 7/2
20/2
= 10

Answer 2
Answer: 10

Step-by-step explanation:

Step 1: Add the whole numbers

6 + 3 = 9

Step 2: Add the fractions

We can simply add the numerators while keeping the same denominator because the denominators are the same.

1/2 + 1/2 = 2/2 = 1

Step 3: Combine them

The answer is 10 since 9 and 1 are whole numbers. So we simply add them.

----------------------------------------------------------------------------------------------------------

Summary

Overall, we add the whole numbers first, then add the fractions. If the denominators are identical, we add the numerators and keep the same denominator. The solution will be displayed as a mixed number/fraction or a whole number. Since there was no fraction at the end, in this case, we simply added the whole numbers.

----------------------------------------------------------------------------------------------------------

FAQ

What is a numerator?

The top-written number in a fraction is the numerator. It shows how many parts of the whole you are talking about.

For example, the numerator of the fraction 3/5 is 3, which means there are 3 parts out of a total of 5 equal parts.

The number of parts taken out of the whole is therefore represented by the numerator.

What is a denominator?

The number written at the bottom of a fraction works as the denominator. It gives the number of equally sized parts of the whole.

As an example, the denominator of the fraction 2/5 is 5, which shows that the entire is divided into four equal parts.

The total number of equal parts that make up the whole is represented by the denominator.

What is a mixed number/fraction?

Mixing a full number and a fraction creates a mixed number. The whole number comes first, then a space, and then the fraction is written.

For example, the mixed number 2 1/2 is a whole number and a fraction, with 2 being the whole number. The word "and" between a mixed number's whole and fraction might be removed or included.

A proper fraction, or one that is less than one whole, must make up the fractional part of the mixed number. Quantities that are not whole numbers but instead consist of several whole numbers are represented by mixed numbers.

What is a whole number?

A number that represents a finished item or thing is said to be a whole number. It is a number that is neither a decimal nor a fraction.

All natural numbers and zero are considered whole numbers. These are positive integers without decimals, fractions, or negative numbers. A few examples of entire numbers include 1, 2, 3, and so forth.

For counting items that cannot be divided into smaller portions, whole numbers are used.

----------------------------------------------------------------------------------------------------------

Learn more

To learn more about fractions, visit here:

https://brainly.com/question/25412

https://brainly.com/question/5220474

https://brainly.com/question/28641578


Related Questions

philosophy question. introduction of logic. please answer correctlyand fully.Use the first thirteen rules of inference to derive the conclusions of the following symbolized arguments: A. 1. X-M 2. M |-(v-M) B. 1. L» (B v 0) 2.-(-0.-B) S Los C. 1. Ko (Y.Z) 2. (K.C) v ( MK) Z

Answers

Using the first thirteen rules of inference to derive the conclusions of the given symbolized arguments.

A. Conclusion: v-X

X-M (Premise)M (Assumption for Conditional Proof)|-(v-M) (Premise)v (Disjunctive Syllogism: 3, M)v-X (Conditional Proof: 2-4)

B. Conclusion: L

L» (B v 0) (Premise)-(-0.-B) (Premise)-0 v -(-B) (Material Implication: 2)-0 v B (Double Negation: 3)B v 0 (Commutation: 1)-B»0 (Material Implication: 5)-B (Disjunctive Syllogism: 4,6)0 (Modus Ponens: 6,7)L (Disjunctive Syllogism: 1,8)

C. Conclusion: Z

Ko (Y.Z) (Premise)(K.C) v ( MK) (Premise)-Z (Assumption for Conditional Proof)-(Y.Z) (Material Implication: 1)-Y v -Z (De Morgan's Law: 4)Y (Disjunctive Syllogism: 2, MK)-Z v -Z (Addition: 3)Z (Negation Elimination: 7)

In the first argument, the disjunctive syllogism and conditional proof rules were used to derive the conclusion. In the second argument, the material implication, double negation, commutation, modus ponens, and disjunctive syllogism rules were used to derive the conclusion. In the third argument, the material implication, De Morgan's Law, disjunctive syllogism, addition, and negation elimination rules were used to derive the conclusion.

Learn more about inference:

https://brainly.com/question/25913650

#SPJ4

Using the rules of inference to derive the conclusions of the given symbolized arguments.

A. Conclusion: v-X

X-M (Premise)

M (Assumption for Conditional Proof)

|-(v-M) (Premise)

v (Disjunctive Syllogism: 3, M)

v-X (Conditional Proof: 2-4)

B. Conclusion: L

L» (B v 0) (Premise)

-(-0.-B) (Premise)

-0 v -(-B) (Material Implication: 2)

-0 v B (Double Negation: 3)

B v 0 (Commutation: 1)

-B»0 (Material Implication: 5)

-B (Disjunctive Syllogism: 4,6)

0 (Modus Ponens: 6,7)

L (Disjunctive Syllogism: 1,8)

C. Conclusion: Z

Ko (Y.Z) (Premise)

(K.C) v ( MK) (Premise)

-Z (Assumption for Conditional Proof)

-(Y.Z) (Material Implication: 1)

-Y v -Z (De Morgan's Law: 4)

Y (Disjunctive Syllogism: 2, MK)

-Z v -Z (Addition: 3)

Z (Negation Elimination: 7)

How to explain the information

The disjunctive syllogism and conditional proof procedures were employed to reach the conclusion in the first argument.

The material implication, double negation, commutation, modus ponens, and disjunctive syllogism rules were employed to reach the conclusion in the second argument. The material implication, De Morgan's Law, disjunctive syllogism, addition, and negation elimination rules were utilized to obtain the conclusion in the third argument.

Learn more about inference:

brainly.com/question/25913650

#SPJ4

Apgar score is a score between 0 and 10 that gives a measure of the physical condition of a newborn infant. Researchers collected the Apgar scores of 20 pairs of identical twins. The researchers wanted to test if their results suggest a significant difference in the Apgar score between the first born twin and the second-bom twin Assume that the necessary conditions for inference were met. Which of these is the most appropriate test and alternative hypothesis? Two-sample t-test with Ha: first-born second-born Paired t-test with Ha: difference >Paired t-test with Ha: difference TWO-sample t-test with Ha:first-bom second-bomTWO-sample t-test with Ha: first-born

Answers

Ha: difference in Apgar score between first-born and second-born twins is not equal to zero.

The most appropriate test for this scenario would be a paired t-test, as the researchers collected data from the same set of twins and are comparing the differences in Apgar score between the first-born and second-born twins.

The appropriate alternative hypothesis for this test would be "Ha: difference in Apgar score between first-born and second-born twins is not equal to zero."

Learn more about "score": https://brainly.com/question/17203075

#SPJ11

PLS HELP ASAP THANKS

Answers

The form of the following quadratic include the following: D. not a quadratic.

What is the general form of a quadratic function?

In Mathematics and Geometry, the standard or general form of a quadratic function can be modeled and represented by using the following quadratic equation;

y = ax² + bx + c

Where:

a and b represents the coefficients of the first and second term in the quadratic function.c represents the constant term.

Mathematically, the vertex form of a quadratic equation is given by this formula:

f(x) = a(x - h)² + k

Where:

h and k represents the vertex of the graph.a represents the leading coefficient.

Additionally, the intercept form of a quadratic equation is given by this formula:

f(x) = a(x - p)(x - q)

In conclusion, we can logically deduce that the given expression is a polynomial function.

Read more on vertex here: brainly.com/question/29797001

#SPJ1

Factored form of this equation

Answers

Answer:

[tex]f(x)=\frac{4x+3}{2x}[/tex]

Step-by-step explanation:

Pre-Solving

We are given the following function: [tex]f(x)=\frac{8x^2+2x-3}{4x^2-2x}[/tex], and we want to simplify it.

Solving

Starting with the numerator, we can factor 8x² + 2x - 3 to become (2x-1)(4x+3).

We can also pull out 2x from the denominator to get 2x(2x-1).

Now, our function will look like:

[tex]f(x)=\frac{(2x-1)(4x+3)}{2x(2x-1)}[/tex]

We can cancel 2x-1 from both the numerator and denominator.

We are left with:

[tex]f(x)=\frac{4x+3}{2x}[/tex]

Suppose that 10 percent of the tubes produced by a machine are defective. If 6 tubes are inspected at random, determine the probability that: (a) Three tubes are defective; (b) At least four tubes are defective;

Answers

a) The probability that three tubes are defective is approximately 0.0146, or 1.46%.

b) The probability that at least four tubes are defective is 0.4686 or 46.86%.

To solve this problem, we can use the binomial probability formula:

P(X = k) = (n choose k) * p^k * (1-p)^(n-k)

where X is the number of defective tubes, n is the total number of tubes inspected, p is the probability that a tube is defective, and (n choose k) is the binomial coefficient, which represents the number of ways to choose k items out of n.

(a) To find the probability that three tubes are defective out of six, we can plug in n = 6, k = 3, and p = 0.1 into the formula:

P(X = 3) = (6 choose 3) * 0.1^3 * 0.9^3
          = 20 * 0.001 * 0.729
          = 0.01458

Therefore, the probability that three tubes are defective is approximately 0.0146, or 1.46%.

(b) To find the probability that at least four tubes are defective out of six, we can use the complementary probability:

P(X >= 4) = 1 - P(X < 4)

To find P(X < 4), we can add up the probabilities of having zero, one, two, or three defective tubes:

P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
               = (6 choose 0) * 0.1^0 * 0.9^6 + (6 choose 1) * 0.1^1 * 0.9^5 + (6 choose 2) * 0.1^2 * 0.9^4 + (6 choose 3) * 0.1^3 * 0.9^3
               = 0.53144

Therefore, P(X >= 4) = 1 - 0.53144 = 0.46856, or approximately 46.86%.

So the probability that at least four tubes are defective is 0.4686 or 46.86%.

Learn more about "probability": https://brainly.com/question/13604758

#SPJ11

Use the equation −20x+3x 2−7=0 to answer all of the following questions.

Answers

Part A: -1/3 and 7
Part B: (3x+1)(x-7)=0
Part C: -1/3 and 7

look at the following input/output table and mapping. Determine if the relation is a function and why.

Answers

No, It is not a function because the x's (input) do repeat.

We know that;

A relation between a set of inputs having one output each is called a function.

Now, We have to given that;

In the given relation,  

The x's (input) do repeat.

Hence, It is not a function.

Thus, Correct statement is,

No, It is not a function because the x's (input) do repeat.

Learn more about the function visit:

https://brainly.com/question/11624077

#SPJ1

A cone with radius 6 feet and height 15 feet is shown.
6
ft
Enter the volume, in cubic feet, of the cone. Round your
answer to the nearest hundredth. step by step expinayion and answer with check

Answers

Answer:

The volume of a cone is given by the formula:

V = (1/3)πr^2h

where r is the radius of the base, h is the height, and π is the constant pi (approximately 3.14).

Plugging in r = 6 and h = 15, we get:

V = (1/3)π(6^2)(15) = 540π cubic feet

Rounding to the nearest hundredth, we get:

V ≈ 1696.63 cubic feet

Therefore, the volume of the cone is approximately 1696.63 cubic feet.

To check, we can use the formula for the volume of a cone to calculate the volume using different methods. For example, we can use the fact that the cone is one-third the volume of a cylinder with the same base and height. The cylinder has radius 6 feet and height 15 feet, so its volume is:

V_cylinder = π(6^2)(15) = 540π cubic feet

Dividing by 3, we get:

V_cone = (1/3)V_cylinder = (1/3)(540π) = 180π cubic feet

Rounding this to the nearest hundredth, we get:

V_cone ≈ 565.49 cubic feet

This is reasonably close to our previous answer of 1696.63 cubic feet, so we can be confident that our calculation is correct.

Step-by-step explanation:

3.
x² + 2x = 1
A. List the values for a, b, and c from the quadratic above (hint: c is not 1!)
a=
b=
C =
B. Fill in the values of a, b, and c to the quadratic formula below
X=
-( ) ± √(
2(
)²-4(
)
)( )
C. Simplify each section (one number) of the quadratic formula from part B
(note that we have split the formula into two problems because of the ± symbol)
and x

Answers

Answer:

a) a = 1 ; b = 2 ;c =-1

c) -1 + √2  ; -1 - √2

Step-by-step explanation:

Solving a quadratic equation using quadratic formula:

        x² + 2x = 1

a)      x² + 2x - 1 = 0

Compare with ax² + bx + c = 0

a = 1 ; b = 2 and c = -1

b)  

      [tex]\boxed{x=\dfrac{-b \± \sqrt{b^2-4ac}}{2a}}[/tex]

           [tex]= \dfrac{-2 \± \sqrt{2^2-4*1*(-1)}}{2*1}\\\\\\\\C) \ =\dfrac{-2 \± \sqrt{4+4}}{2}\\\\=\dfrac{-2 \± \sqrt{8}}{2}\\\\=\dfrac{-2 \±2\sqrt{2}}{2}\\\\=\dfrac{2(-1 \± \sqrt{2})}{2}\\\\= -1 \± \sqrt{2}[/tex]

          x  = -1 + √2   or x = -1 -√2      

of the 43 people at a basketball team party, 30 of them play basketball, 15 are under six feet tall, and 9 do not play basketball and are six feet or taller. Determine the number of people at the party who play basketball and are under six feet tall,|Bn Ul, where B represents the set of people at the party who play basketball and U represents the set of people at the party who are under six feet tall, |B∩U] = _______
What is the probability that a randomly chosen party-goer plays basketball and is under six feet tall, P(BU)? Express the result with precision to three decimal places. P( B∩U) =______

Answers

The number of people at the party who play basketball and are under six feet tall, |B∩U] = 31 . The probability that a randomly chosen party-goer plays basketball and is under six feet tall, P(BU) = 0.732 .

Using the formula: |B∩U| = |B| + |U| - |B∪U|

where, |B| = 30 and |U| = 15 .

|B∪U| = |B| + |U| - |B∩U| + |(not B)∩(not U)|

where, |(not B)∩(not U)| = 9

|B∪U| = 30 + 15 - |B∩U| + 9

|B∪U| = 54 - |B∩U|

So, |B∩U| = 30 + 15 - |B∪U|

|B∪U| = 30 + 15 - |B∩U| + 9

|B∩U| = 36 - |B∪U|

Substituting |B∪U| into the earlier equation:

|B∩U| = 30 + 15 - (36 - |B∪U|)

|B∩U| = 9 + |B∪U|

Using the equation above:

|B∪U| = |B| + |U| - |B∩U| + |(not B)∩(not U)|

Substituting this into the earlier equation:

|B∩U| = 9 + (54 - |B∩U|)

2|B∩U| = 63

|B∩U| = 31.5

Therefore, the number of people at the party who play basketball and are under six feet tall, |B∩U|, is approximately 31.

To find the probability, P(B∩U),

P(B∩U) = |B∩U|/|S|

where |S| is the size of the sample space = 43

Substituting the value of |B∩U|:

P(B∩U) = 31.5/43

P(B∩U) ≈ 0.732

Therefore, the probability that a randomly chosen party-goer plays basketball and is under six feet tall, P(B∩U), is 0.732.

Know more about probability here:

https://brainly.com/question/13604758

#SPJ11

HW8.10.Finding the Characteristic Polynomial and Eigenvalues Consider the matrix 0.00 0.00 0.007 A= 0.00 0.00 0.00 L0.00 0.00 0.00 Compute the characteristic polynomial and the eigenvalues of A. The characteristic polynomial of A is p(A)= num 3+ num 2+ num ? x+ num Therefore, the eigenvalues of A are: (arrange the eigenvalues so that X1 < X2 < X3 X1 num num X3 num Save &Grade2attempts left Save only Additional attempts available with new variants e

Answers

The remaining eigenvalue is λ = -0.007. Thus, the eigenvalues of A are:
X1 = 0
X2 = 0
X3 = -0.007
Arranging them in ascending order, we get:
X1 = -0.007
X2 = 0
X3 = 0

To find the characteristic polynomial of A, we first need to compute the determinant of (A - λI), where I is the identity matrix and λ is a scalar variable:

|0-λ  0.00 0.007|
|0.00 0-λ  0.00 |
|0.00 0.00 0-λ  |

Expanding along the first row, we get:

(0-λ) |0-λ  0.00| - 0.00 |0.00 0-λ | + 0.007 |0.0 0.00|
       |0.00 0-λ |            |0.0 0.00|                 |0.00 0-λ |

Simplifying, we obtain:

-λ³ + (-0.007)λ² = 0

Factoring out λ², we get:

λ²(-λ - 0.007) = 0

Therefore, the characteristic polynomial of A is:

p(A) = λ³ + 0.007λ²

To find the eigenvalues of A, we need to solve the equation p(A) = 0. We can see that one of the roots is λ = 0, which has multiplicity 2 (since it appears as a factor of λ² in the characteristic polynomial). To find the third eigenvalue, we need to solve:

λ³ + 0.007λ² = 0

Factoring out λ² again, we obtain:

λ²(λ + 0.007) = 0

Therefore, the remaining eigenvalue is λ = -0.007. Thus, the eigenvalues of A are:

X1 = 0
X2 = 0
X3 = -0.007

Arranging them in ascending order, we get:

X1 = -0.007
X2 = 0
X3 = 0

learn more about characteristic polynomial

https://brainly.com/question/28805616

#SPJ11

The snail dataset contains the percentage water content of the tissues of snails

grown under three different levels of relative humidity and two different temperatures.

(a) Use the command xtabs(water ∼ temp + humid, data = snail)/4 to produce

a table of mean water content for each combination of temperature and humidity. Can you use this table to predict the water content for a temperature

of 25 degrees C and a humidity of 60%? Explain.

(b) Fit a regression model with the water content as the response and temperature and humidity as predictors. Use this model to predict the water content

for a temperature of 25 degrees C and a humidity of 60%.

(c) Use this model to predict water content for a temperature of 30 degrees C

and a humidity of 75%. Compare your prediction to the prediction from (a).

Discuss the relative merits of these two predictions.

(d) The intercept in your model is 52. 6%. Give two values of the predictors for

which this represents the predicted response. Is your answer unique? Do

you think that this represents a reasonable prediction?

Answers

The humidity should be approximately 68%.

How to solve

a)

When you run the command -

> xtabs(water ~ temp+humid, snail)/4

you get the following output -

Now, we see that the humidity of 60% lies exactly in between the humidity of 45% and 75%. And also the temperature of 25oC lies exactly in between the temperature of 20oC and 30oC.

So, we can proceed by taking the average values to estimate the water content.

Create a colum for the humidity of 60% in between humidity of 45% and 75% by taking the mean of humidity of 45% and 75% as shown -

Humidity

45% 60% 75%

Temp 20 72.5 77 81.5

30 69.5 73.875 78.25

Now, similarly create a row for the temperature of 25oC by taking the average of rows for the temperature of 20oC and 30oC as shown -

Humidity

45% 60% 75%

Temp 20 72.5 77 81.5

25 71 75.4375 79.875

30 69.5 73.875 78.25

So, we can see that the estimated water content for 60% humidity and temperature of 25oC is = 75.4375.

--------------------------------------

b)

Use the following code to fit the regression model for 'water' with predictors 'temperature' and 'humidity'.

> model <- lm(water ~ temp+humid, snail)

Now, you can view the parameters using the code -

> coefficients(model)

This will give you the following output -

> coefficients (model)\n(Intercept)\nhumid\n52.6108059-0.1833333 0.4734890\ntemp\n

So, the estimated regression model is -

Water = 52.6108 - 0.1833(temp) + 0.4735(humid)

We can now use this model to predict the water content for humidity of 60% and temperature of 25oC using following code -

First define your new data using code -

> newdata = data.frame(temp = 25, humid = 60)

And now use -

> predict(model, newdata)

to get the predicted value. You will get the output as -

76.43681

-------------------------------------

c)

Again, define your new parameters as -

> newdata2 = data.frame(temp = 30, humid = 75)

And use the model to predict the water content using -

> predict(model, newdata2)

you will get the output as -

82.62248

So, the predicted water content for 75% humidity and 300C temperature is = 82.62248.

From part (a), we get that the average water content for given condition is 78.25%. The average method used in part (a) is straight forward and doesn't involve much mathematics while the linear regression method uses complex algorithm to predict the value but has much more accuracy than the simple average method because its not necessary that data is always changing with constant rate.

-------------------------------

d)

For a predicted response of 52.6%, we would have -

Water = 52.6108 - 0.1833(temp) + 0.4735(humid) = 52.6

=> 0.4735 (humid) = 0.1833(temp)

Or temp \approx 2.6 (humid)

So, any pair of values satisfying the above relation would give the predicted value same as the intercept value.

For example, humidity = 60% and temperature = 156oC

or, humidity = 45% and temperature = 117oC

But note that the regression model has been trained on values of temperature ranging between 20 to 30 while we are using the temperature of more than 100oC to get the predicted value same as intercept value.

So, this doesn't represent a reasonable prediction.

----------------------------------------------------------

e)

For, predicted value of water = 80%, and temperature of 25oC, the humidity would be -

Water = 52.6108 - 0.1833(temp) + 0.4735(humid) = 80

=> 52.6108 - 0.1833(25)+ 0.4735(humid) = 80

=> humid = 67.52%

So, humidity should be approximately 68%.

Read more about humidity here:

https://brainly.com/question/21494654

#SPJ1

there are 7 different roads between town a and town b, four different roads between town b and town c, and two different roads between town a and town c. (a) (5 points) how many different routes are there from a to c all together? (b) (5 points) how many different routes are there from a to c and back (any road can be used once in each direction)? (c) (5 points) how many different routes are there from a to c and back in part (b) that visit b at least once? (d) (5 points) how many different routes are there from a to c and back in part (b) that do not use any road twice?

Answers

To find the total number of different routes from town A to town C, we can first find the number of different routes from A to B and then multiply it by the number of different routes from B to C. There are 7 different roads between A and B and 4 different roads between B and C. Therefore, the total number of different routes from A to C is 7 x 4 = 28.

(b) To find the total number of different routes from town A to town C and back, we can use the product rule. There are 28 different routes from A to C (as calculated in part a) and 28 different routes from C to A (since we can use any road once in each direction). Therefore, the total number of different routes from A to C and back is 28 x 28 = 784.

(c) To find the total number of different routes from town A to town C and back in part (b) that visit town B at least once, we can use the principle of inclusion-exclusion. There are 28 different routes from A to C and 28 different routes from C to A. However, we need to subtract the routes that do not visit B at all. To find this number, we can use the product rule again, since there are 5 different roads between A and C that do not go through B (2 from A to C and 3 from C to A). Therefore, the number of routes that do not visit B at all is 2 x 3 = 6. So, the total number of different routes from A to C and back in part (b) that visit B at least once is 28 x 28 - 6 = 784 - 6 = 778.

(d) To find the total number of different routes from town A to town C and back in part (b) that do not use any road twice, we can use the principle of permutations. Since we cannot use any road twice, we need to find the number of permutations of the roads. There are 7 roads between A and B, 4 roads between B and C, and 2 roads between A and C. Therefore, the total number of different routes from A to C and back in part (b) that do not use any road twice is 7P2 x 4P2 x 2P2 = 126 x 12 x 2 = 3024.

Know more about routes here;

https://brainly.com/question/31146964

#SPJ11

Suppose Yi, i=1, 2, ,…,n, are i.i.d. random variables, each
distributed N(-3,81). Compute Pr[(-3) < Y < (-2)] for a
sample size of 36.

Answers

The probability that (-3) < Y < (-2) for a sample size of 36 is approximately 0.0385.

Given, Yi, i=1, 2, ,…,n, are i.i.d. random variables, each distributed N(-3,81),

i.e., Yi ~ N(-3,81)

We need to find Pr[(-3) < Y < (-2)] for a sample size of 36.

First, we need to standardize the variable Y as follows:

Z = (Y - μ) / σ

where μ is the mean of Y, and σ is the standard deviation of Y.

Here, μ = -3 and σ = 9 (since the standard deviation is the square root of the variance, which is given as 81).

So,

Z = (Y - (-3)) / 9 = (Y + 3) / 9

Now, we need to find Pr[(-3) < Y < (-2)] in terms of Z:

Pr[(-3) < Y < (-2)] = Pr[(-3 + 3)/9 < Z < (-2 + 3)/9]

= Pr[0 < Z < 1/9]

We can use the standard normal distribution table or calculator to find the probability of Z lying between 0 and 1/9.

Using a standard normal distribution table or calculator, we get:

Pr[0 < Z < 1/9] ≈ 0.0385

Therefore, the probability that (-3) < Y < (-2) for a sample size of 36 is approximately 0.0385.

To learn more about variables visit:

https://brainly.com/question/17344045

#SPJ11

please solve it with details and explanation- Find all vectors in R3 orthogonal to ū = (-1,1, 2) which are a linear combination of vectors ū1 = (1,0,1) and ū2 = (2,2,1). Which of them have a 2-norm equal to 5?

Answers

To find all vectors in R3 orthogonal to ū = (-1,1,2) which are a linear combination of vectors ū1 = (1,0,1) and ū2 = (2,2,1), we can use the cross product of ū1 and ū2 to get a vector that is orthogonal to both ū1 and ū2. Then, we can use the dot product to find the scalar multiple of that vector that is orthogonal to ū.

First, we find the cross product of ū1 and ū2:

ū1 x ū2 = (2,-1,-2)

This vector is orthogonal to both ū1 and ū2. To find the scalar multiple of this vector that is orthogonal to ū, we take the dot product:

(2,-1,-2) · (-1,1,2) = 0

This tells us that any scalar multiple of (2,-1,-2) is orthogonal to ū. Therefore, any linear combination of ū1 and ū2 that is a scalar multiple of (2,-1,-2) will also be orthogonal to ū.

To find the 2-norm of these vectors, we can use the formula:

||x|| = sqrt(x1^2 + x2^2 + x3^2)

Let's call the scalar multiple of (2,-1,-2) k:

k(2,-1,-2) = (2k, -k, -2k)

To find the value of k that gives a 2-norm of 5, we set ||k(2,-1,-2)|| = 5:

sqrt((2k)^2 + (-k)^2 + (-2k)^2) = 5

Simplifying this equation, we get:

sqrt(9k^2) = 5

3k = 5

k = 5/3

Therefore, the vector that is a linear combination of ū1 and ū2 and is orthogonal to ū and has a 2-norm of 5 is:

(2/3, -5/3, -10/3)

More on vectors: https://brainly.com/question/3184914

#SPJ11

What is the value of J?

Answers

Answer:

100°

Step-by-step explanation:

Supplementary angle pairs sum to 180°.

Supplementary Angles

Supplementary angle pairs form a straight line. Since straight lines have a measure of 180°, the sum of supplementary angles is always 180°. Supplementary angles do not necessarily have to be adjacent, but the angles above are. Since the angles above create a straight line together, they must be supplementary angles.

Solving for j

Now that we know that the sum must be 180°, we can create an equation to find j.

j + 80 = 180

To solve this, all we need to do is subtract 80 from both sides.

j = 100

Angle j must have a measure of 100°.

Which graph shows the solution to the inequality shown below?

Answers

The solution to the inequality 15 ≤ 5x + 20 < 35 is -1 ≤ x < 3.

Option C is the correct answer.

We have,

To solve the inequality 15 ≤ 5x + 20 < 35,

We need to isolate the variable x by performing the same operation on all three parts of the inequality.

15 ≤ 5x + 20 < 35

Subtract 20 from all three parts:

-5 ≤ 5x < 15

Divide all three parts by 5:

-1 ≤ x < 3

Therefore,

The solution to the inequality 15 ≤ 5x + 20 < 35 is -1 ≤ x < 3.

This means that any value of x between -1 (inclusive) and 3 (exclusive) will satisfy the inequality

Learn more about inequalities here:

https://brainly.com/question/22010462

#SPJ1

The half-life of radium is 1690 years. If 80 grams are present now, how much will be present in 430 years

Answers

Approximately 63.7 grams of radium will be present in 430 years, given that 80 grams are present now.

The half-life of radium is 1690 years, which means that after 1690 years, half of the initial amount will remain. We can use this information to calculate the amount of radium that will be present in 430 years, given that 80 grams are present now.

Let A(t) be the amount of radium present at time t, measured in grams. Then, the formula for the amount of radium after time t, given the initial amount A0, is:

[tex]A(t) = A0 * (1/2)^(t/1690)[/tex]

We can use this formula to find the amount of radium that will be present in 430 years, by setting t = 430 and A0 = 80:

[tex]A(430) = 80 * (1/2)^(430/1690)[/tex]

A(430) ≈ 63.7 grams

Therefore, approximately 63.7 grams of radium will be present in 430 years, given that 80 grams are present now.

The reason for this decrease in the amount of radium over time is due to the process of radioactive decay. Radium atoms are unstable and undergo radioactive decay, which results in the emission of alpha particles and the transformation of the radium atom into a different element. The half-life of radium is the time it takes for half of the initial amount of radium to decay. As the radium atoms continue to decay over time, the amount of radium present decreases exponentially, following the formula above.

To know more about half-life of radium refer here:

https://brainly.com/question/14883322

#SPJ11

Question 3 Passengers arrive at a taxi stand with room for W taxis according to a Poisson process with rate λ. A person boards a taxi upon arrival if one is available and otherwise waits in a line. Taxis arrive at the stand according to a Poisson process with rate μ. An arriving taxi that finds the stand full departs immediately; otherwise, it picks up a customer if at least one is waiting, or else joins the queue of waiting taxis. a. Draw a state-diagram for this system and show that it corresponds to a birth-death process. Define clearly the meaning of each state. b. Find the steady-state probability of having n persons waiting in the line. c. Find the steady-state probability of having m taxis waiting in the taxi stand.

Answers

a) This state-diagram corresponds to a birth-death process because the transitions only depend on the current state and not on any previous history of the system. b) We can sum over all values of mp(n) = ∑p(n,m). c. This system can be modeled as a birth-death process, where the states represent the number of taxis and the number of people waiting in line.

Steady-state probabilities of waiting passengers and taxis can be found using balance equations and summing probabilities for the respective cases


a. To draw the state-diagram for this system, we need to identify the different states of the system. In this case, the states are the number of taxis and the number of people waiting in line. Let's denote the number of taxis by n and the number of people waiting in line by m. The states can be represented as (n,m).

For each state, there are two possible transitions: a taxi can arrive, or a passenger can board a taxi. If a taxi arrives, the system moves to state (n+1,m) with probability μ, if there is room for the taxi. If there is no room, the taxi departs immediately and the system moves to state (n,m) with probability λ. If a passenger boards a taxi, the system moves to state (n,m-1) with probability μ. If there are no passengers waiting, the taxi joins the queue and the system moves to state (n+1,m) with probability λ.

This state-diagram corresponds to a birth-death process because the transitions only depend on the current state and not on any previous history of the system.

b. To find the steady-state probability of having n persons waiting in line, we need to use the balance equations. Let p(n,m) be the steady-state probability of being in state (n,m). Then, the balance equations are:

λp(n-1,m) + μp(n,m-1) = (λ+p)m(n,m) + μ(n+1)p(n+1,m)

for n >= 0 and m >= 0. We also have the normalization condition:

∑p(n,m) = 1.

We can solve these equations to find the steady-state probabilities. In this case, we are interested in the probabilities of having n persons waiting in line, so we can sum over all values of m:

p(n) = ∑p(n,m).

c. To find the steady-state probability of having m taxis waiting in the taxi stand, we can use a similar approach. The balance equations are:

λp(n-1,m) + μp(n,m-1) = λ(n+1)p(n+1,m) + (μ+p)m(n,m)

for n >= 0 and m >= 0. We can solve these equations to find the steady-state probabilities. In this case, we are interested in the probabilities of having m taxis waiting in the stand, so we can sum over all values of n:

p(m) = ∑p(n,m).

Overall, this system can be modeled as a birth-death process, where the states represent the number of taxis and the number of people waiting in line. We can use the balance equations to find the steady-state probabilities of having n persons waiting in line or m taxis waiting in the stand.

For more about transitions:

https://brainly.com/question/11874534

#SPJ4

Determine the degree of the product.
-2x^(2)(4x^(3)-5x^(2)

A.–6
B.6
C.4
D.5

Answers

Answer:

To find the degree of the product, we need to multiply the highest degree terms of the two factors.

In this case, the two factors are -2x^2 and (4x^3 - 5x^2).

The highest degree term in -2x^2 is -2x^2 itself, which has a degree of 2.

The highest degree term in (4x^3 - 5x^2) is 4x^3, which has a degree of 3.

When we multiply these terms, we get:

-2x^2 * 4x^3 = -8x^(2+3) = -8x^5

Therefore, the degree of the product is 5.

The answer is D) 5.

Step-by-step explanation:

highest exponent number

Step-by-step explanation:

https://brainly.com/question/15414724

calculate the average rate of change of each function from x=2 to x=4

Answers

The rate of Change of Function A is 1/2 and function B is 3/2.

We have to the average rate of change of each function from x=2 to x=4.

For Function A:

Here, f(2)= 1 and f(4) = 2

So, the rate of change

= f(4)- f(2)/ (4-2)

= (2-1)/ 2

= 1/2

Function B:

Here, f(2)= 4 and f(4) = 7

So, the rate of change

= f(4)- f(2)/ (4-2)

= (7- 4)/ 2

= 3/2

Learn more about Rate of Change here:

https://brainly.com/question/29518179

#SPJ1

Please help me answer the question

Answers

Answer:

54734431

Step-by-step explanation:

54734431

Some say that a restaurant should charge its customers about 3. 5 times the cost of the ingredients. How much should a restaurant charge if the ingredients cost $10?

Answers

The amount of a restaurant charge if the ingredients cost $10 is,

⇒ $35

We have to given that;

A restaurant should charge its customers about 3. 5 times the cost of the ingredients.

Hence, We get;

The amount of a restaurant charge if the ingredients cost $10 is,

⇒ 3.5 x $10

⇒ $35

Thus, The amount of a restaurant charge if the ingredients cost $10 is,

⇒ $35

Learn more about the multiplication visit:

https://brainly.com/question/10873737

#SPJ1


What would be an example of a tiered observation if you are measuring temperature?

Ranking the temperatures.
Tiered observations only apply to discrete variables.
Measurements rounded off to the nearest degree.
Only considering those temperatures in a certain tier.

Answers

An example of a tiered observation when measuring temperature would be measurements rounded off to the nearest degree.

This means that when you observe and measure the temperature, you would round the values to the nearest whole degree, providing a concise and uniform set of data points for analysis or comparison.

One example of a tiered observation when measuring temperature could be only considering those temperatures in a certain range, such as only observing temperatures that fall within the range of 60-70 degrees Fahrenheit. This would be a tiered observation because it is limiting the range of data being observed.

However, it's important to note that measurements rounded off to the nearest degree could also be considered a tiered observation because it's grouping data into discrete categories based on the rounding method used.
Learn more about temperature  here: brainly.com/question/900679

#SPJ11

find the sum of the coefficients in the polynomial $3(x^{10} - x^7 2x^3 - x 7) 4(x^3 - 2x^2 - 5)$ when it is simplified.

Answers

The sum of the coefficients in the simplified polynomial is -54.

Adding two integers always results in an integer, if the two integers are positive, their sum will be positive, if two integers are negative, they will yield a negative sum)

To find the sum of the coefficients of the simplified polynomial, first, distribute the constants and then combine like terms.

The given polynomial is:

[tex]$3(x^{10} - x^7 2x^3 - x 7) 4(x^3 - 2x^2 - 5)$[/tex]

Distribute the constants:

[tex]$3x^{10} - 3x^7 - 6x^3 - 3x - 21 + 4x^3 - 8x^2 - 20$[/tex]
Combine like terms:

[tex]$3x^{10} - 3x^7 + (-6x^3 + 4x^3) + (-8x^2) + (-3x) + (-21 - 20)$[/tex]

Which simplifies to:

[tex]$3x^{10} - 3x^7 - 2x^3 - 8x^2 - 3x - 41$[/tex]

Now, sum the coefficients:

[tex]$3 - 3 - 2 - 8 - 3 - 41 = -54$[/tex]

So, the sum of the coefficients in the simplified polynomial is -54.

learn more about Polynoimal

https://brainly.com/question/11536910

#SPJ11

Solve the quadratic equation
7. 3x2 + 13x10 = 0
9. 12n²-11n +2=0
11. 4x² + 12x +9=0
X
8. 5x28x +3=0
10. 10a²a-2=0
12. 8x2 10x + 3 = 0

Answers

The solution of the quadratic equations are shown below.

How do you solve the quadratic equation?

There are various methods that we could use when we want to solve a quadratic equation and these include;

1) Formula method

2) Graphical method

3) Completing the square method

4) Factor method

We have solved the following quadratic equations by factoring.

1)  3x^2 + 13x +10 = 0

x = - 1 and -10/3

2)  12n²-11n +2=0

n = 2/3 and 1/4

3) 5x^2 + 8x +3=0

x = -3/5 and -1

4)  10a²+ a -2=0

a = 2/5 and -1/2

5) 8x^2 + 10x + 3 = 0

x = -1/2 and -3/4

Learn more about quadratic equation:https://brainly.com/question/30098550

#SPJ1

Determine whether the relationship is a function. Complete the explanation.
Input
-5
1
6
7
Output
7
4
1
4
Since (select)
(select) a function.
✓input value is paired with (select)
output value, the relationship

Answers

The given relation:

Input    output

-5             7

1                4

6              1

7               4

Is a function.

Is the relation a function?

A relation maps elements (inputs) from one set into elements (outputs)of another set, and a relation is called a function if every element of the first set is mapped into only one element of the second set.

Here the first set is:

Input

-5

1

6

7

And the correspondent pairings are:

7

4

1

4

Notice that every one of the inputs appears only once, then this is a function.

Learn more about functions at:

https://brainly.com/question/2328150

#SPJ1

What standard form polynomial expression represents the area of the triangle? 3g^2-6g+2

Answers

Therefore, the standard form polynomial expression that represents the area of the triangle is: [tex](3/2)g^2h - 3gh + h[/tex].

The expression [tex]3g^2 - 6g + 2[/tex] does not represent the area of a triangle because it is not in the form of a polynomial expression that represents the area of a triangle. The area of a triangle is given by the formula:

A = (1/2)bh

Here A is the area, b is the base of the triangle, and h is the height of the triangle.

To write a polynomial expression in standard form that represents the area of a triangle, we need to simplify the formula for A using algebra. Let's assume that [tex]3g^2 - 6g + 2[/tex] represents the base of the triangle and h represents the height of the triangle. Then, we have:

A =[tex](1/2)(3g^2 - 6g + 2)h[/tex]

A =  [tex](3/2)g^2h - 3gh + h[/tex].

Learn more about polynomial visit: brainly.com/question/1496352

#SPJ4

Find the exact values of x and y. ​

Answers

The exact values of the variables are;

x = 9

y =14.5

How to determine the values

To determine the value of the variables, we have that the trigonometric identities are;

tangentsecantcosecantsinecosinecotangent

From the diagram shown, we can se that the triangle is an isosceles triangle

An  isosceles triangle has two of its sides and angles equal to each other.

Then, the value of the variable x would be;

x = 18/2 = 9

Using the Pythagorean theorem;

15²- 9² = y²

find the square value

y² = 225 - 16

y² = 209

Find square root

y = 14. 5

Learn more about trigonometric identities at: https://brainly.com/question/7331447

#SPJ1

which of the following statements about histograms are true? multiple choice a histogram is used to display qualitative data. the bars are drawn adjacent to each other because the data is continuous. the heights of the bars represent relative class frequencies. a histogram has gaps between the bars.

Answers

The statement "the heights of the bars represent relative class frequencies" is true. The correct answer is C.

A histogram is a graphical representation of the distribution of numerical data. It is commonly used to display the frequency distribution of continuous data in a graphical form.

The horizontal axis of the histogram represents the range of values of the variable being measured, and this range is divided into equal intervals called bins. The vertical axis represents the frequency, or the number of times a value appears in each bin.

The statement "the heights of the bars represent relative class frequencies" is also true. In a histogram, the height of each bar represents the frequency or count of data points that fall within each bin. This height is proportional to the frequency of data points within each bin, and it is often normalized to show the relative frequency of each bin.

for such more question on histogram

brainly.com/question/28164315

#SPJ11

Other Questions
Find the value of tan X rounded to the nearest hundredth, if necessary.5W126X When blood levels of glucose, amino acids, and insulin are high, and glycogenesis is occurring in the liver, the body is in thepostabsorptive state.absorptive state.bulimic state.stress state.fasted state. If the level of confidence is decreased, while the sample remains the same, how will the width of a confidence interval for population mean be affected? Assume that the population standard deviation is unknown, and the population distribution is extremely normal Five sevenths of the fifty six images used as backgrounds on julia iPad were photos from dance class that she took herself. How many photos are of julia dance class? **Make sure you provide Your final answer as a fraction with a denominator of 56 Mason is trying to decide if apicture frame that he isworking on has a 90 degreeangle. He measured the sidelengths of the frame to checkand found that the length ofthe frame is 15 inches, thewidth of the frame is 8 inches,and the diagonal of the frameis 17 inches. Does the corner ofthe frame create a 90 degreeangle? The Increment is done only when it has been determined to be usable and potentially releasable by ........ T/F:Self or provider testicular examination on asymptomatic individuals is now not recommended Seven thives of different ages have a to share 1000 coins. The rule forsharing the loot is as follows.- The oldest thief proposes how to share the coins,- All thieves (including the proposer) vote for or against the proposal,- Proposal is accepted if more than half of the thieves vote for it,- If the proposal is accepted, then the coins are shared in that way andthe game ends,- Otherwise, they kill the proposer and the process is repeated with thethieves that remain.Thieves are not bloodthirsty; if a thief would get the same (positive)amount of coins if he voted for or against a proposal, he will vote forso that the proposer wont be killed. Assume that all thieves areintelligent, rational, greedy, do not wish to die and good at maths forthieves.What is the maximum number of coins that the oldest thief might get? What are the negative effects of stressful life events? Consider the stochastic differential equation dX X:(1 - X) dw, where (W.) is a Brownian motion. This is the Wright-Fisher model in genetics: X, is the frequency of a gene (the fraction of a population of individuals that have that gene). (a) Use R, Matlab, or some other language to generate random variates 21,..., 21024 according to the standard normal distribution. (b) Use the random variates in (a) to simulate an approximate realization of (We) for 0 Which characteristic of a therapeutic milieu would the nurse consider important for a confused older adult with socially aggressive behavior?A. Sets limitsB. Has varietyC. Is group orientedD. Allows freedom of expression Calculate the [h ] for a 0. 0473 m solution of barium hydroxide, ba(oh)2 assuming complete dissociation of the compound help help me please tomorrow is the deadline Find the derivative ofRud-cost at F(x)=Your answer:() cos(x2)() -2xcos(x2)() sin)+c() 1-cox7(x2) juliet is concerned with the potential for political harassment when her company enters a new international market. to reduce the risk of political harassment, she is most likely to consider using____to enter the market.(1 point) At the end of 2021, Teal Mountain Co. has accounts receivable of $697,200 and an allowance for doubtful accounts of $22,590. On January 24, 2022, it is learned that the company's receivable from Madonna Inc. is not collectible and therefore management authorizes a write-off of $4,513.a. Prepare the journal entry to record the write-off.b. What is the cash realizable value of the accounts receivable before the write-off and after the write-off? The____ will not approve a promotion if the apprentice fails to measure up in all categories to local JATC ____and ____ ? . what is the value of t oml brainly deleted my question for no reason >=( please help me Verify that the function corresponding to the figure to the right is a valid probability density function. Then find the following probabilities:a.P(x5)c.P(4d. P(6Verify that the function is a valid probability density function by confirming the given density function satisfies the probability density function properties. Select the correct choice below and, if necessary, fill in the answer box within your choice.A.As f(x)0 for at least one value of x and the total area under the density function above the x-axis is...the given function is a valid probability density function.(Type an integer or a decimal. Do not round.)B.As f(x)0 for all values of x and the total area under the density function above the x-axis is...the given function is a valid probability density function.(Type an integer or a decimal. Do not round.)C.As the total area under the density function above the x-axis isthe given function is a valid probability density function.(Type an integer or a decimal. Do not round.)D.As f(x)0 for all values of x, the given function is a valid probability density function.