Answer:
0.1241.
Step-by-step explanation:
So, from the question we are given the following parameters or information or data which are going to help us in solving this particular question/problem. They are; [1]. The critical path for a project = 37 days, the variances total or variance of critical path or sum of variance on critical path]². = 27, the desired completion time/day = 43 days.
So, we will be making use of the formula given below;
The number of standard deviation = desired completion time/day - critical time or sum of critical path times ÷√[variance of critical path or sum of variance on critical path]².
The number of standard deviation = 43 - 37 ÷ √27 = 1.1547.
Thus, the probability of completing in 43 days = P(Z > 1.1547) = 0.1241.
Suppose that Elsa and Frank determine confidence intervals based on the same sample proportion and sample size. Elsa uses a larger confidence level than Frank. How will midpoint and width of confidence intervals compare
Answer:
elsa's interval width will be greater than that of frank
Step-by-step explanation:
first of all we are told that both Elsa and Frank have the same sample proportion so their midpoint is also going to be the same.
now as the confidence level goes higher, so also would the margin of error increase. then the width of the confidence interval would rise so it can be more confident.
from this question elsa has a larger confidence level therefore her intervals width will be greater than franks own.
How many years will it take for Steven to make a total of $21,200?
(7 points)
12
8
6
10
solve for z 3=(z+1) write your answers as integers or as proper or improper fractions
Answer:
z=2
Step-by-step explanation:
Just solve
1 + z = 3 (minus 1 on both sides)
z = 2
Plug in
3=(2+1)
3 = 3
Which statement about residual plots is not true?
A. If there is an obvious pattern, the model is probably reasonable.
B. The vertical axis shows residuals.
C. The x-axis appears in the middle of the graph.
D. The sum of the residuals is 0.
Answer:
Step-by-step explanation:
d
Answer:
A
Step-by-step explanation:
What formula is used to
determine the expected value for a variable?
Find the surface area of the cube shown below 2.3
Answer:
2 2/3 or 8/3
Step-by-step explanation:
Formula for each side = 2/3 x 2/3
2/3 x 2/3 = 4/9
6 sides
4/9 x 6 or 4/9 + 4/9 + 4/9 + 4/9 + 4/9 + 4/9
=2 2/3 or 8/3
Answer:
2 2/3
Is the answer
3. How many solutions are there to the
equation 2x^2 - 3x +12=0? Tell how
you know.
Answer:
If you're talking about solutions in general (real and imaginary solutions), there is 2, because the fundamental theorem of algebra says that the number of roots of any polynomial is the degree if it's highest power, which is 2.
If you're talking about only real solutions, there is 0. To show that, we can take the discriminant (b^2-4ac) part of the quadratic equation, and plug in the know values. We then get:
(-3)^2-4*2*12
=9-96
=-87
Remember, the discriminant will be taken the square root. Since this is negative, the answer will be imaginary. Therefore, there is no real solution.
Question 3 of 6 (1 point) Attempt 33 of Unlimited View question in a popup
2.4 Section Exercise 6
In a study of 550 meals served at 75 campus cafeterias, 77 had less than 10 grams of fat but not less than 350 calories; 81 had
less than 350 calories but not less than 10 grams of fat; 186 had over 350 calories and over 10 grams of fat.
Part: 0/2
E
Part 1 of 2
(a) What percentage of meals had less than 10 grams of fat? Round your answer to the nearest tenth of a percent.
of the meals studied, 1% of them had less than 10 grams of fat.
Answer:
10%
Step-by-step explanation:
(a) What percentage of meals had less than 10 grams of fat?
(b) Round your answer to the nearest tenth of a percent.
To find the percentage of meals with less than 10 grams of fat, count the number of meals with less than 10 grams of fat and divide by the total number of meals; multiply this figure by a hundred.
(A) Total number of meals = 550
Number of meals having less than 10 grams of fat = 77
Percentage of meals having less than 10 grams of fat = 77/550 × 100
= 0.14 × 100 = 14%
(B) Rounding the answer to the nearest tenth of a percent means approximating it to the nearest multiple of 10 that is not more than 100 (where 100 here represents a full cent or 'percent').
The multiples of 10 that are close to 14 are 10 and 20. The closest being 10, your answer becomes 10%
A lumber supplier sells 96-inch pieces of oak. Each piece must be within ¼ of an inch of 96 inches. Write and solve an inequality to show acceptable lengths.
Answer:
[tex]95 \frac{3}{4} \: inch \leqslant x \leqslant 96 \frac{1}{4} \: inch[/tex]
Step-by-step explanation:
Given that a lumber supplier sells 96 inch Pieces of oak which must be within 1/4 of an inch.
This situation can be represented by the following absolute value inequality:
[tex]|x \: - 96| \: \leqslant \: \frac{1}{4} [/tex].
The absolute value can be thought of as the size of something because length cannot be negative. The length must be no more than 1/4 away from 96.
To simplify this, pretend this is a standard equality, |x-96| = 1/4. 1/4 is the range of acceptable length, 96 is the median of the range, and x is the size of the wood.
First apply the rule |x| = y → x = [tex]\pm[/tex]y
|x-96| = 1/4
x - 96 = [tex]\pm[/tex]1/4
x = [tex]96 \pm 1/4[/tex]
(These are just the minimum, and maximum sizes)
Now with a less than or equal to, the solutions are now everything included between these two values.
Therefore:
[tex]96 - 1/4 \: \leqslant x [/tex] [tex]\leqslant \: 96 + 1/4 [/tex]
With less than inequalities, you must have the lower value on the left, and the higher value on the right.
If x represents the size of the pieces, then the acceptable lengths are represented by this following inequality:
[tex]95 \frac{3}{4} \: inch \leqslant x \leqslant 96 \frac{1}{4} \: inch[/tex]
This is interpreted as x (being the size of the oak) is greater than or equal to 95 3/4, and less than or equal to 96 1/4 in inches.
________ and ________ are two ways that substances pass through a cell membrane out of the cell. A Photosynthesis, diffusion B Diffusion, active transport C Active transport, mitosis D Photosynthesis, mitosis
Answer:
b. diffusion and active transport
Step-by-step explanation:
these are two ways that substances, like nutrients, pass through cell membranes.
Answer:
b
Step-by-step explanation:
What is the absolute value of 5,234?
Answer:
Step-by-step explanation:
5.234
Pls answer fast Y=Mx+b for x
Answer:
y=mx+b
y=mx+b-b
y-b=mx
y-b/m = mx/m
y-b/m = x
Answer:
x = (y - b)/M.
Step-by-step explanation:
y = Mx + b
Mx = y - b
x = (y - b)/M.
Tickets for a drumline competition cost $5 at the gate and $3 in advance. One hundred more tickets were sold in advance than at the gate. The total revenue from ticket sales was $1990. How many tickets were sold in advance?
Answer:
The number of tickets sold at the gate is [tex] G = 211.25[/tex]
The number of tickets sold in advance is [tex] A = 311.25 [/tex]
Step-by-step explanation:
From the question we are told that
The cost of a tickets at the gate is [tex]a = \$ 5[/tex]
The cost of a ticket in advance is [tex]b = \$ 3[/tex]
Let the number of ticket sold in the gate be G
Let the number of ticket sold in advance be A
From the question we are told that
One hundred more tickets were sold in advance than at the gate and this can be mathematically represented as
[tex]G + 100 = A[/tex]
From the question we are told that
The total revenue from ticket sales was $1990 and this can be mathematically represented as
[tex]5 G + 3A = 1990[/tex]
substituting for A in the equation above
[tex]5 G + 3[G + 100]= 1990[/tex]
[tex]5 G + 3G + 300= 1990[/tex]
[tex] 8G + 300= 1990[/tex]
[tex] 8G = 1690[/tex]
=> [tex] G = 211.25[/tex]
Substituting this for G in the above equation
[tex]5 [211.25] + 3A = 1990[/tex]
=> [tex] 3A = 1990 - 1056.25[/tex]
=> [tex] A = 311.25 [/tex]
if you subtract 19 from my number and multiply the difference by -2, the result is -8
Answer:cool
Step-by-step explanation:
Answer:
23
Step-by-step explanation:
let the number be 'a'
-2(a - 19)= -8
open the brackets
-2a + 38 = -8
collect like terms
38 + 8 = 2a
46 = 2a
a = 23
A company sells widgets. The amount of profit, y, made by the company, is related to the selling price of each widget, x, by the given equation. Using this equation, find out what price the widgets should be sold for, to the nearest cent, for the company to make the maximum profit.
y=-10x^2+600x-3588
y=−10x
2
+600x−3588
Answer:
Step-by-step explanation:
The maximum profit will be found in the vertex of the parabola, which is what your equation is. You could do this by completing the square, but it is way easier to just solve for h and k using the following formulas:
[tex]h=\frac{-b}{2a}[/tex] for the x coordinate of the vertex, and
[tex]k=c-\frac{b^2}{4a}[/tex] for the y coordinate of the vertex.
x will be the selling price of each widget and y will be the profit. Usually, x is the number of the items sold, but I'm going off your info here for what the vertex means in the context of this problem.
Our variables for the quadratic are as follows:
a = -10
b = 600
c = -3588. Therefore,
[tex]h=\frac{-600}{2(-10)}=30[/tex] so the cost of each widget is $30. Now for the profit:
[tex]k=-3588-(\frac{(600)^2}{4(-10)})[/tex] This one is worth the simplification step by step:
[tex]k=-3588-(\frac{360000}{-40})[/tex] and
k = -3588 - (-9000) and
k = -3588 + 9000 so
k = 5412
That means that the profit made by selling the widgets at $30 apiece is $5412.
Hence,the profit made by selling the widgets at $[tex]30[/tex] apiece is $[tex]5412[/tex].
What is the maximum profit?
Maximum profit, or profit maximisation, is the process of finding the right price for your products or services to produce the best profit.
Here given that,
A company sells widgets. The amount of profit, [tex]y[/tex], made by the company, is related to the selling price of each widget, [tex]x[/tex], by the given equation.
As the maximum profit found in the vertex of the parabola,
Here, [tex]x[/tex] will be the selling price of each widget and [tex]y[/tex] will be the profit.
The number of items sold is [tex]x[/tex].
So, the quadratic equation is:-
[tex]a = -10b = 600c = -3588.[/tex]
Therefore, so the cost of each widget is $[tex]30[/tex].
For the profit:-
[tex]k = -3588 - (-9000) andk = -3588 + 9000 sok = 5412[/tex]
Hence,the profit made by selling the widgets at $[tex]30[/tex] apiece is $[tex]5412[/tex].
To know more about the maximum profit
https://brainly.com/question/16755335
#SPJ2
(9x+5)+(-2x^2+10x)
(9x+5)+(−2x
2
+10x)
Answer:
If i´m correct and read the answer correct it should be:
-18x³+80x²+65x+5
Step-by-step explanation:
Hopefully this is correct, I couldn't understand if (-2x 2+10x) was spaced or if it was being multiplied.
PLEASE HELP Please i don’t understand
Answer:
answer is 5
Step-by-step explanation:
f(5)= -5×5^2+26×5
= -125+130
= 5
Question 1 (2 points)
Bentley is trying to get better at skateboarding. He has a goal of skateboarding 5 miles total this week with two short runs and one longer run. His two short runs total 2.25 miles. How long will his long skateboard run need to be in order to hit his goal?
To find the length of Bentley’s long run, you would use:
5 – 2.25
Question 1 options:
True
False
Answer:
True
Step-by-step explanation:
If he is doing 2 short runs and one long run, and his 2 short runs equal 2.25 miles, you'd need to subtract them from the total to find out the long run.
Rectangle A’B’C’D’ is the image of rectangle ABCD after which of the following rotations?
Answer:
You're right!
Step-by-step explanation:
Answer:
Were you right?
Step-by-step explanation:
Please help!!
x^2-2x+1-9y^2
Answer:
[tex]\left(x-1+3y\right)\left(x-1-3y\right)[/tex]
Step-by-step explanation:
[tex]x^2-2x+1-9y^2\\\\factor(skip for time)\\\\\left(x-1\right)^2-9y^2\\\\[/tex]
A little algebra process later...
you got the answer
Hoped this helped ya
<3
RedAnswer:
(x-1-3y) x (x-1+3y)
Step-by-step explanation:
x^2-2x+1-9y^2
Using a^2 - 2ab + b^2 = (a-b)^2 (factor the expression) = (x-1)^2 - 9y^2
(x-1)^2 - 9y^2 = (x-1-3y) x (x-1+3y) should be the answer :)
Find the unknown angle measures.
Answer:
x = 9°
y = 119°
Step-by-step explanation:
Given,
y° = 61°+58° { the exterior angle formed by producing the side of triangle is equal to two non-adjacent angle}
or, y° = 119°
therefore, y° = 119°
Now,
52°+y°+x° = 180°{the sum of angle if triangle is 180°}
or, 52°+119°+x°= 180°
or, 171°+x° = 180°
or, x° = 180°-171°
or, x° = 9°
therefore, x° = 9°
PLEASE HELP
ILL GIVE BRAINLIEST
Answer:
f(7x−1)=63x−16
Step-by-step explanation:
Answer:
x=3
Step-by-step explanation:
since f(x) and g(x) are equal, we can make the equation, 9x-7 = 7x - 1
9x = 7x + 6, 2x = 6, x = 3
What is the midpoint of the segments with endpoints (3,7) and (9,15)
Answer:
(6,11)
I can confirm that this question is right.
12/2 22/2
(6 , 11)
3s (s - 2) =12s, please help me this. Thank you!
Answer:hbjnhbgfvrdfghjhgfdfghjhgfghjkl
The body temperatures of a group of healthy adults have a bell-shaped distribution with a mean of 98.18 F and a standard deviation of 0.65 F. Using the empirical rule, find each approximate percentage below.
a.
What is the approximate percentage of healthy adults with body temperatures within 3 standard deviation of the mean, or between 96.23 F and100.3 F?
Answer:
99.7%
Step-by-step explanation:
Empirical rule formula states that:
• 68% of data falls within 1 standard deviation from the mean - that means between μ - σ and μ + σ.
• 95% of data falls within 2 standard deviations from the mean - between μ – 2σ and μ + 2σ.
• 99.7% of data falls within 3 standard deviations from the mean - between μ - 3σ and μ + 3σ.
From the question, we have mean of 98.18 F and a standard deviation of 0.65 F
The approximate percentage of healthy adults with body temperatures between 96.23 F and100.13 F is
μ - 3σ
= 98.18 - 3(0.65)
= 98.18 - 1.95
= 96.23 F
μ + 3σ.
98.18 + 3(0.65)
= 98.18 + 1.95
= 100.13 F
Therefore, the approximate percentage of healthy adults with body temperatures between 96.23 F and 100.13 F which is within 3 standard deviations of the mean is 99.7%
suppose that the life distribution of an item has the hazard rate function of what is the probability that
Answer:
that what
Step-by-step explanation:
Graph the line y-3=-1/3(x+2)
Slope: 1/2
y-intercept(s): (0, 7/3)
x: 0, 7
y: 7/3, 0
Step-by-step explanation:
y=-3 -1/3(1+2)=2/3.3=1.3=3
y=3
Order from least to greatest:
-5/6,0.567,-0.11,-1/4
Answer:
-5/6,-1/4,-0.11,0.567
Step-by-step explanation:
function rule y=3x-3
Answer:
-15, -9, -3, 3
Step-by-step explanation:
First One:
y =3(-4)-3 is -15
Second:
y= 3(-2)-3 is -9
Third:
y= 3(0)-3 is -3
Last One:
y= 3(2)-3 is 3
what is the pattern 2 10 40 120
Answer:
2 plus 3
Step-by-step explanation: