Telescoping Series: Given the series n(n - 1) "=2 Part 1 Find a formula for the nth partial sum, Sn that depends only on n. Sn = _________ Part 2 Evaluate the following limit to determine whether the given series converges or diverges. lim Sn _________ Therefore the series _________ to _________. Note: If the series diverges, type 'inf' in the last blank:

Answers

Answer 1

The formula for the nth partial sum of the series n(n-1) is Sn = n(n+1)(2n-1)/6 and the series diverges.

Part 1: The formula for the nth partial sum, Sn, for the series n(n-1), can be found by using the formula for the sum of the first n natural numbers, which is given by Sn = n(n+1)/2. To find the sum of n(n-1), we can rewrite it as n^2 - n and use the formula for the sum of the first n squares, which is given by n(n+1)(2n+1)/6. Therefore, the formula for Sn is Sn = n(n+1)(2n-1)/6.

Part 2: To determine whether the given series converges or diverges, we need to evaluate the limit of Sn as n approaches infinity. Taking the limit of the formula for Sn, we get lim Sn = lim [n(n+1)(2n-1)/6] = lim (2n^3/6) = lim (n^3/3) = inf. Since the limit of Sn is infinity, the series diverges.

In conclusion, the formula for the nth partial sum of the series n(n-1) is Sn = n(n+1)(2n-1)/6 and the series diverges as the limit of Sn approaches infinity. This means that the sum of the series does not converge to a finite value and grows without bound as n increases.

To learn more about Partial sums, visit:

https://brainly.com/question/30339367

#SPJ11


Related Questions

A domestic manufacturer of watches purchases quartz crystals from a Swiss firm. The crystals are shipped in lots of 1000. The acceptance sampling procedure uses 20 randomly selected crystals.
a. Construct operating characteristic curves for acceptance criteria of 0, 1, and 2.
b. If p0 is .01 and p1 = .08, what are the producer’s and consumer’s risks for each sampling plan in part (a)?

Answers

The producer’s risk is 0.99 and the consumer’s risks for each sampling plan are 0.347, 0.049, and 0.176 for acceptance criteria 0, acceptance criteria 1, and acceptance criteria 2 respectively.

a. The operating characteristic curve (OC curve) shows the probability of accepting a lot with a given quality level, based on the sample size and acceptance criteria. Here are the OC curves for acceptance criteria of 0, 1, and 2, assuming a binomial distribution:

Acceptance Criteria = 0:
Sample size: 20
Probability of acceptance (p): 0.01
Probability of rejection (1-p): 0.99
OC Curve:
Quality Level (proportion defective) | Probability of acceptance
0% | 0.994
1% | 0.988
2% | 0.977
3% | 0.958
4% | 0.928
5% | 0.883
6% | 0.821
7% | 0.743
8% | 0.653
9% | 0.556
10% | 0.458

Acceptance Criteria = 1:
Sample size: 20
Probability of acceptance (p): 0.92
Probability of rejection (1-p): 0.08
OC Curve:
Quality Level (proportion defective) | Probability of acceptance
0% | 1.000
1% | 1.000
2% | 1.000
3% | 1.000
4% | 1.000
5% | 1.000
6% | 0.999
7% | 0.998
8% | 0.993
9% | 0.981
10% | 0.951

Acceptance Criteria = 2:
Sample size: 20
Probability of acceptance (p): 0.83
Probability of rejection (1-p): 0.17
OC Curve:
Quality Level (proportion defective) | Probability of acceptance
0% | 1.000
1% | 1.000
2% | 1.000
3% | 1.000
4% | 0.999
5% | 0.998
6% | 0.992
7% | 0.978
8% | 0.949
9% | 0.898
10% | 0.824

b. The producer's risk (Type I error) is the probability of rejecting a good lot, while the consumer's risk (Type II error) is the probability of accepting a bad lot. Here are the calculations for each sampling plan:

Acceptance Criteria = 0:
Producer's risk = α = 1 - p0 = 0.99
Consumer's risk = β = 1 - OC at p1 = 1 - 0.653 = 0.347

Acceptance Criteria = 1:
Producer's risk = α = 1 - p0 = 0.99
Consumer's risk = β = 1 - OC at p1 = 1 - 0.951 = 0.049

Acceptance Criteria = 2:

Producer's risk = α = 1 - p0 = 0.99
Consumer's risk = β = 1 - OC at p1 = 1 - 0.824 = 0.176

Note that the producer's risk is the same for all three sampling plans since it is based on the specified probability of a defective unit in the lot. The consumer's risk, however, varies depending on the acceptance criteria and sample size. Generally, a more lenient acceptance criterion (higher p-value) or a larger sample size will result in lower consumer risk.

To know more about the binomial distribution visit:

https://brainly.com/question/31197941

#SPJ11

PLS:(
HC is a diameter. HA = 83°, BC= 50°, HD = 135°, GF = 32°, HG = 45°, and FE = 55°
Find the measures of the following angles.

Answers

The measures of the following angles are; Angle 1 =44

Given that HC is the diameter of the circle, then:

HA = 83°, BC= 50°, HD = 135°, GF = 32°, HG = 45°, and FE = 55°

From the given figure, HC can be expressed as:

HC = HA + BC + AB

Substituting with HC = 180°, HA = 83°, and BC = 50°, and solving for AB:

180 = 83 + AB + 50

AB = 47

The relation between the angle outside the circle, ∠1, and the intersected arcs AB and HD are:

Angle = 1/2(HD - AB)

Substituting with HD = 135°, and AB = 47°:

Angle 1 = 1/2(135 - 47)

Angle 1 =44

Learn more about the circle;

https://brainly.com/question/29255833

#SPJ1

What is the distance between (3,-4) and (6,9)?
use the distance formula
A. 5.83
B. 7.47
C. 10.25
D. 13.34

Answers

Answer:

D. 13.34

Step-by-Step Explanation:

distance formula

[tex]d=\sqrt{(x2-x1)^2 +(y2-y1)^2} \\d=\sqrt{(6-3)^2 +(9-(-4))^2} \\d=\sqrt{178}[/tex]

Suppose a city contains 200,000 registered voters. Of these, 120,000 (60%) support a
particular ballot proposition to legalize recreational marijuana at the state level.
Suppose 200 of the voters are randomly selected to be polled, and all of them actually
respond to the poll and report their beliefs truthfully.
(a) The process of choosing 200 voters at random and counting the total number who
support the ballot proposition is like drawing 200 times without replacement from a
box. Describe or draw this box.
(b) If we drew 200 times with replacement from this box, there is a 95% chance that the
sum of draws (number of voters contacted who support the ballot proposition) would
be between ________ and _______. Expressed as a percentage of the 200 people, this is
between ________% and _______%.

Answers

(a) The box can be represented as a population of 200,000 registered voters, with 120,000 of them supporting the ballot proposition and 80,000 opposing it. Each voter can be represented by a ticket, and the box would contain 120,000 tickets labeled "Support" and 80,000 tickets labeled "Oppose."

(b) If we drew 200 times with replacement from this box, there is a 95% chance that the sum of draws (number of voters contacted who support the ballot proposition) would be between 106 and 134. Expressed as a percentage of the 200 people, this is between 53% and 67%.

(a) The box can be represented as a collection of 200,000 balls, where each ball corresponds to a registered voter. Among these, 120,000 balls are labeled as "support" to indicate that the voter supports the ballot proposition, and the remaining 80,000 balls are labeled as "oppose" to indicate that the voter does not support the proposition. When we randomly select 200 voters without replacement and count the number of supporters among them, we are essentially drawing 200 balls from this box without replacement and counting the number of balls labeled as "support".

(b) Since we are drawing with replacement, each draw is independent and has a Bernoulli distribution with a probability of success p = 0.6 (since 60% of the voters support the proposition). The sum of these draws has a binomial distribution with parameters n = 200 (the number of trials) and p = 0.6 (the probability of success). The mean of this distribution is μ = np = 200 x 0.6 = 120, and the standard deviation is σ = sqrt(np(1-p)) = sqrt(200 x 0.6 x 0.4) ≈ 7.75.

To find the range of values within which the sum of draws is likely to fall with 95% confidence, we can use the normal approximation to the binomial distribution, which is appropriate when np > 10 and n(1-p) > 10. In this case, we have np = 120 and n(1-p) = 80, so the normal approximation is valid.

We want to find the values of k such that P(μ - kσ < X < μ + kσ) = 0.95, where X is the sum of draws. Using the standard normal distribution, we have:

P(-k < Z < k) = 0.95,

where Z = (X - μ)/σ is a standard normal variable. From standard normal tables, we find that k ≈ 1.96.

Therefore, the 95% confidence interval for the sum of draws is:

120 - 1.96 x 7.75 ≈ 104.1 to 120 + 1.96 x 7.75 ≈ 135.9.

As a percentage of the 200 people polled, this is between:

104.1/200 x 100 ≈ 52.05% and 135.9/200 x 100 ≈ 67.95%.

To know more about Bernoulli distribution refer here:

https://brainly.com/question/30906879

#SPJ11

Negative three times a number plus seven is greater than negative 17.

Answers

Yes it is think about the multiplication part hard.

Answer:

-3 times n+7>-17

Step-by-step explanation:

What is the domain of the function in the graph?

Answers

The domain of the function shown in the graph is the one in option A:

6 ≤ k ≤ 11

What is the domain of the function in the graph?

The domain of a function y = f(x) is the set of the inputs of the function. To identify the domain in a graph, we need to look at the horizontal axis (also called the x-axis).

On the graph we can see that it starts at x = 6 with a closed dot, and it ends at x = 11 also with a closed dot.

That means that these values belong to the domain, so we can write the domain as follows:

Domain = 6 ≤ k ≤ 11

(notice that the variable in the horizontal axis is k).

Learn more about domain at:

https://brainly.com/question/1770447

#SPJ1

1) Crunchy Critters produces bags of chips. The mean weight of the chips is 16 oz
with a standard deviation of 0.3 oz. What is the probability that a bag of chips is
less than 15.4 oz? (round to nearest hundredth)

Answers

If Crunchy-Critters produces chips bags with mean weight as 16 oz, the the probability that weight of the bag is less than 15.4 oz is 0.0228.

We use the standard normal distribution to find the required probability. First, we need to standardize the value of 15.4 oz using the formula : z = (x - μ) / σ,

where x is = value we are interested in, μ is = mean weight, σ is = standard deviation, and z is the standardized score.

The mean-weight of the chips is (μ) = 16 oz,

The standard-deviation of weight (σ) is 0.3 oz,

Substituting the values we have, we get:

⇒ z = (15.4 - 16)/0.3,

⇒ z = -2, and

We know that, P(X < 15.4) = P(Z < -2) = 0.0228

Therefore, the required probability is 0.0228 or 2.28%.

Learn more about Probability here

https://brainly.com/question/13799179

#SPJ1

Which equality statement is FALSE?
Responses
A −1 = −(−1)−1 = −(−1)
B 7 = −[−(7)]7 = −[−(7)]
C 1 = −[−(1)]1 = −[−(1)]
D −(−14) = 14

Answers

The equality statement is False (b) 7= -(-(7)).

The expression on the right side of the equation simplifies to -(-7), which is equal to 7, making the statement untrue. Therefore, 7=-(-7) should be used as the right equality declaration.

In other words, 7 is equal to the opposite of -(-7)

The area of mathematics known as algebra aids in the representation of circumstances or problems as mathematical expressions. Mathematical operations like addition, subtraction, multiplication, and division are combined with variables like x, y, and z to produce a meaningful mathematical expression.

The associative, commutative, and distributive laws are the three fundamental principles of algebra. They facilitate the simplification or solution of problems and aid in illustrating the connection between different number operations.

To Learn more about Function visit:

https://brainly.com/question/31011913

#SPJ4

A set of equations is given below:

Equation A: y = x + 1
Equation B: y = 4x + 5

Which of the following steps can be used to find the solution to the set of equations?

a
x + 1 = 4x + 5

b
x = 4x + 5

c
x + 1 = 4x

d
x + 5 = 4x + 1

Answers

A is the only one that can be used to find the solution

Braun's Berries is Ellen's favorite place to pick strawberries. This morning, she filled one of Braun's boxes with berries to make a homemade strawberry-rhubarb pie. The box is 10.5 inches long, 4 inches deep, and shaped like a rectangular prism. The box has a volume of 357 cubic inches.
Which equation can you use to find the width of the box, w?
What is the width of the box?

Answers

Answer:

357=10.5*4*x

8.5x

Step-by-step explanation:

357=10.5*4*x

357=42*x

8.5=x

Region 1 Region 2 Region 3 Region 4
3.02 3.30 2.46 2.55
3.19 2.88 2.43 3.70
3.59 2.19 2.49 2.38
2.98 3.28 2.39 3.51
2.82 3.06 2.53 2.42
3.24 2.91 2.81 2.53
2.89 3.29 2.38 3.73
3.55 2.81 2.81 3.06
2.84 2.74
2.95
A local weather team is comparing the mean amount of snowfall (in inches) reported by viewers in four different regions of the city. Based on the data, can you conclude that there is a difference between the mean amount of snowfall for these four regions? Use a 0.050.05 level of significance and assume the population distributions are approximately normal with equal population variances.
Step 1 of 2 :
Compute the value of the test statistic. Round any intermediate calculations to at least six decimal places, and round your final answer to four decimal places.
Reject or Fail to

Answers

The critical F-value (3.098), we can reject the null hypothesis and conclude that there is a significant difference between the mean amount of snowfall for the four regions.

To learn

To test whether there is a significant difference between the mean amount of snowfall for the four regions, we can use a one-way ANOVA test. The null hypothesis for this test is that the mean amount of snowfall is the same for all four regions, while the alternative hypothesis is that at least one region has a significantly different mean amount of snowfall than the others.

To begin, we can calculate the sample means and sample standard deviations for each region:

Region 1: Mean = 3.10, SD = 0.283

Region 2: Mean = 3.00, SD = 0.418

Region 3: Mean = 2.57, SD = 0.182

Region 4: Mean = 3.09, SD = 0.499

Next, we can calculate the overall mean and overall variance of the sample data:

Overall mean = (3.10 + 3.00 + 2.57 + 3.09) / 4 = 2.94

Overall variance = (([tex]0.283^2[/tex] + 0.418^2 + [tex]0.182^2[/tex] + [tex]0.499^2[/tex]) / 3) / 4 = 0.00937

Using these values, we can calculate the F-statistic for the one-way ANOVA test:

F = (Between-group variability) / (Within-group variability)

Between-group variability = Sum of squares between groups / degrees of freedom between groups

Within-group variability = Sum of squares within groups / degrees of freedom within groups

Degrees of freedom between groups = k - 1 = 4 - 1 = 3

Degrees of freedom within groups = N - k = 20 - 4 = 16

Sum of squares between groups = (n1 * (x1bar - overall_mean)[tex]^2[/tex] + n2 * (x2bar - overall_mean)[tex]^2[/tex] + n3 * (x3bar - overall_mean)[tex]^2[/tex] + n4 * (x4bar - overall_mean)[tex]^2[/tex]) / (k - 1)

= ((9 * (3.10 - 2.94)[tex]^2[/tex] + 9 * (3.00 - 2.94)[tex]^2[/tex] + 7 * (2.57 - 2.94)[tex]^2[/tex] + 3 * (3.09 - 2.94)[tex]^2[/tex]) / 3

= 3.602

Sum of squares within groups = (n1 - 1) * s[tex]1^2[/tex] + (n2 - 1) * s[tex]2^2[/tex] + (n3 - 1) * s[tex]3^2[/tex] + (n4 - 1) * s[tex]4^2[/tex]

= (8 *[tex]0.283^2[/tex] + 8 * 0.[tex]418^2[/tex] + 6 * [tex]0.182^2[/tex] + 2 * [tex]0.499^2[/tex])

= 1.055

F = (Between-group variability) / (Within-group variability) = 3.602 / 1.055 = 3.415

We can then use an F-distribution table or calculator to find the critical F-value for a significance level of 0.05, with degrees of freedom between groups = 3 and degrees of freedom within groups = 16. The critical F-value is 3.098.

Since our calculated F-value (3.415) is greater than the critical F-value (3.098), we can reject the null hypothesis and conclude that there is a significant difference between the mean amount of snowfall for the four regions.

To learn more about significant visit:

https://brainly.com/question/2284168

#SPJ11

Let A ∈ R^nxn and let C ∈ R^nxm. Prove the following: (1) Assume A is positive semidefinite. Show that tr A=0 if and only if A = 0. (2) When m

Answers

Let A ∈ R^(nxn) and let C ∈ R^(nxm). We will prove the following:

(1) Assume A is positive semidefinite. We need to show that tr(A) = 0 if and only if A = 0.

Proof:

(i) If A = 0, then tr(A) = 0 since the trace of the zero matrix is 0.

(ii) Assume tr(A) = 0. Recall that A is positive semidefinite, which means that its eigenvalues are non-negative. Since the trace of a matrix is the sum of its eigenvalues, having tr(A) = 0 implies that all eigenvalues of A must be zero. Consequently, A is a diagonal matrix with all diagonal elements equal to 0. Therefore, A = 0.

Thus, we have shown that tr(A) = 0 if and only if A = 0.

Learn more about : Matrix - https://brainly.com/question/31694543

#SPJ11

Roya paid $48 for 12 cartons of orange juice. What is the unit rate per carton of orange juice that roya paid for

Answers

Step-by-step explanation:

You are given $  and  cartons and you want  $/carton

$ 48 / 12 cartons =  $ 4 / carton    <====unit rate

Suppose the scores on a Algebra 2 quiz are normally distributed with a mean of 79 and a standard deviation of 3. Which group describes 16% of the population of Algebra 2 quiz scores?

Answers

The group described by 16% of the population is 73.

What is the group describes 16% of the population?

For a normal distribution curve, the population are often divided into 2% below the mean, 14 % below the mean, 34% below the mean, the mean, 34% above the mean, 16% above the mean and 2 % above the mean.

for 34% below the mean, the population = M - 1std

for 16% below the mean, the population = M - 2std

So the population represented by 16% is calculated as follows;

= M - 2std

where;

M is the meanstd is standard deviation

= 79 - 2 (3)

= 79 - 6

= 73

Learn more about normal distribution here: https://brainly.com/question/4079902

#SPJ1

HELPPPPP!:
WHICH OF THE FOLLOWINGS ARE POLYNOMIAL EXPRESSION!:::-
A. 2x+3 B. 3y² - 2y + 4
C. a + 1/a D. root over 5x + 1
E. x²/2 - 3x + 7 F. root over x+2 - 3
NO NEED FOR EXPLANATION!!!​

Answers

Answer:

search-icon-header

Search for questions & chapters

search-icon-image

Question

Bookmark

If x=2 and x=3 are roots of the equation 3x

2

−2kx+2m=0 then (k,m)=

Medium

Solution

verified

Verified by Toppr

Correct option is A)

Since x=2 and x=3 are roots of the equation 3x

2

−2kx+2m=0

⇒12−4k+2m=0⇒2k−m=6 ...(i)

and ⇒27−6k+2m=0⇒6k−2m=27 ...(ii)

On multiplying (i) by 3 and subtracting (ii) from it, we get

6k−3m=18

6

k

+

2m=

2

7

−m=−9

∴m=9

On putting m=9 in (i), we get

2k=15⇒k=

2

15

∴(k,m)=(

2

15

,9)

Hence, Option A is correct.

Answer:

A. 2x+3 and B. 3y² - 2y + 4 and E. x²/2 - 3x + 7 are polynomial expressions.

While on vacation at the beach, Eleanor drew the figure shown.
In Eleanor's drawing, the measure of

F
M
D
is 15°, and the measure of

B
M
C
is 30°.
What is the measure of

C
M
D
?

Answers

The measure of the angle ∠CMD is 45.

We have,

From the figure,

∠FMD = 15

∠BMC = 30

Now,

∠BMF = 90

This can be written as,

∠BMC + ∠CMD + ∠FMD = 90

30 + ∠CMD + 15 = 90

∠CMD = 90 - 45

∠CMD = 45

Thus,

The measure of the angle ∠CMD is 45.

Learn more about angles here:

https://brainly.com/question/7116550

#SPJ1

How many triangles are there?

Answers

Answer:

24

Step-by-step explanation:

starting with the "top floor" :

3 single small triangles.

then the left 2 combined and the right 2 combined.

and then all 3 combined.

that is 3 + 2 + 1 = 6 triangles.

now we extend the triangles from the top floor to the next floor below.

we have the same number of triangles, they are just longer.

6 triangles there.

and we extend the triangles to the next floor below.

we have again the same number of triangles, they are just even longer.

6 triangles there.

and we extend the triangles to the next (and last) floor below.

we have again the same number of triangles, they are just very long.

6 triangles there.

that makes for the 4 floors

6×4 = 24 triangles.

Find a parametrization of the surface with equation (y2 + 1)e^z – (z^2 + 1)e^x + y^2z^2e^y = 0.

Answers

The surface with equation (y^2 + 1)e^z – (z^2 + 1)e^x + y^2z^2e^y = 0 can be parametrized as follows 1:

x = u

y = v

z = ln((v^2 + 1) / (u^2 + 1))

Parametrization of a surface is a mathematical technique used to describe a surface in terms of parameters. It involves expressing the coordinates of points on the surface as functions of two or more parameters. A common way to parametrize a surface is to use two parameters u and v to represent the coordinates of points on the surface. This is called a parametric representation or a parametric equation of the surface. Another way to parametrize a surface is to use a vector-valued function, which maps a point in a domain onto a point on the surface. Both of these techniques allow us to describe the surface in a way that is useful for mathematical analysis and visualization.

#SPJ11

Learn more about parametric representation of the surface:  https://brainly.com/question/24189086.

The table represents the function f (x) = 3x – 1. A 2-column table with 4 rows. Column 1 is labeled x with entries negative 5, negative 2, 4, 8. Column 2 is labeled f (x) with entries a, negative 7, b, c. Use the drop-downs to choose the values of a, b, and c to complete the table. a = b = 14 c =

Answers

The  value of a= 17.5, b=-14 and c=-28.

What is function?

A function is represented as a rule that produces a distinct result for each input x. In mathematics, a function is indicated by a mapping or transformation

Given function:

f (x) = 3x – 1.

Also,

x        f(x)

-5       a

-2       7

4        b

8       c

Now, using the proportionality

k = y/x

k = 7 / (-2)

k = -3.5

So, -3.5 = a/ (-5)

-3.5 x (-5) = a

a= 17.5

again, -3.5 = b/4

b= -14

Lastly, -3.5 = c/8

c= -28.

Hence, the value of a= 17.5, b=-14 and c=-28.

Learn more about function here:

brainly.com/question/12431044

#SPJ1

Fill in the P(x - x) values to give a legitimate probability distribution for the discrete random vanuble X, whose possible values are 1, 2, 4, 5, and 6. Value of x P(X= ) 1 0.10 2 022 0.14 X 5 ?

Answers

The legitimate probability distribution for the discrete random variable X is:

Value of x P(X= )

1 0.10

2 0.22

4 0.14

5 0.18

6 0.36

To create a legitimate probability distribution, the sum of all the probabilities should be equal to 1. So, we can use the fact that the sum of all probabilities must equal 1 to find the missing probability for X = 5.

Value of x P(X= )

1 0.10

2 0.22

4 0.14

5 ?

6 0.36

To find P(X = 5), we can subtract the sum of the probabilities for X = 1, 2, 4, and 6 from 1:

P(X = 5) = 1 - (0.10 + 0.22 + 0.14 + 0.36) = 0.18

Therefore, the legitimate probability distribution for the discrete random variable X is:

Value of x P(X= )

1 0.10

2 0.22

4 0.14

5 0.18

6 0.36

To learn more about probability visit:

https://brainly.com/question/15124899

#SPJ11

Please help! See picture

Answers

The term that must be added to the equation to make it a perfect square is 9, which makes the option D correct.

How to evaluate for the term to make the equation a perfect square

We have to apply completing the square method to know the term to be added as follows:

For the equation;

x² + 6x = 1

we first divide the coefficient of x by 2;

6/2 = 3

then we square the result;

3² = 9

and then add 9 to both sides of the equation to make it a perfect square

x² + 6x + 9 = 1 + 9

(x + 3)² = 10.

Therefore, the term that must be added to the equation to make it a perfect square is 9.

Read more about square here:https://brainly.com/question/8665569

#SPJ1

In a certain city the temperature (in degrees Fahrenheit) t hours after 9am was approximated by the function T(t) = 30 + 19 sin (pit/12) Determine the temperature at 9 am. Determine the temperature at 3 pm. Find the average temperature during the period from 9 am to 9 pm

Answers

The average temperature during the period from 9am to 9pm is approximately 32.51 degrees Fahrenheit

To find the temperature at 9am, we can simply plug in t=0 into the given function:

T(0) = 30 + 19 sin(0) = 30

So the temperature at 9am is 30 degrees Fahrenheit.

To find the temperature at 3pm, we need to find the value of t that corresponds to 3pm. Since 3pm is 6 hours after 9am, we have t=6:

T(6) = 30 + 19 [tex]sin((pi/12)*6[/tex]) = 30 + 19 s[tex]in(pi/2)[/tex] = 30 + 19 = 49

So the temperature at 3pm is 49 degrees Fahrenheit.

To find the average temperature during the period from 9am to 9pm, we need to find the average value of the function T(t) over the interval [0,12]. We can use the formula for the average value of a function:

avg(T) = (1/(b-a)) * ∫[a,b] T(t) dt

In this case, a=0 and b=12, so we have:

avg(T) =[tex](1/12) * ∫[0,12] (30 + 19 sin(pit/12[/tex])) dt

Integrating term by term, we get:

avg(T) = (1/12)[tex]* (30t - (19/12) *[/tex] ([tex]12cos(pit/12[/tex])) |[0,12]

Evaluating the expression at t=12 and t=0, we get:

[tex]avg(T) = (1/12)[/tex] [tex]* (3012 - (19/12) * (12cos[/tex][tex](pi)) - (300 - (19/12) * (12cos(0))))[/tex]

Simplifying, we get:

[tex]avg(T) = (1/12) *[/tex] (360 + 38.13) = 32.51

To know more about  temperature, here

https://brainly.com/question/26866637

#SPJ4

Calculate the energy (in eV/atom) for vacancy formation in some metal, M, given that the equilibrium number of vacancies at 317oC is 6.67 × 1023 m-3. The density and atomic weight (at 317°C) for this metal are 6.40 g/cm3 and 27.00 g/mol, respectively.

Answers

The energy for vacancy formation per atom in the metal M is 0.91 eV/atom.

To calculate the energy (in eV/atom) for vacancy formation in the metal M, we can use the following formula:

E_v = RT * ln(N_v/N)

Where:
- E_v is the energy for vacancy formation per atom
- R is the gas constant (8.314 J/mol*K or 0.008314 eV/mol*K)
- T is the temperature in Kelvin (317°C = 590K)
- N_v is the equilibrium number of vacancies (6.67 × 10^23 m^-3)
- N is the number of atoms per unit volume, which can be calculated using the density and atomic weight of the metal as follows:

N = (6.40 g/cm^3) * (1 mol/27.00 g) * (6.022 × 10^23 atoms/mol) = 1.51 × 10^22 atoms/m^3

Plugging in these values, we get:

E_v = (0.008314 eV/mol*K) * (590 K) * ln(6.67 × 10^23 m^-3 / 1.51 × 10^22 atoms/m^3)
E_v = 0.91 eV/atom

Therefore, the energy for vacancy formation per atom in the metal M is 0.91 eV/atom.

Learn more about "energy": https://brainly.com/question/13881533

#SPJ11

Determine over what interval(s) (if any) the Mean Value Theorem applies. (Enter your answer using interval notation. If an answer does not exist, enter DNE.)
y=√x2−25

Answers

The Mean Value Theorem applies over the interval (-5, 5) and (5, ∞).

To determine the interval(s) where the Mean Value Theorem (MVT) applies for the function y=√(x^2-25), we need to ensure that the function is continuous and differentiable on the given interval.

1. The function is continuous when the expression under the square root is non-negative, which means x^2-25≥0. Solving for x, we get x≥5 or x≤-5. In interval notation, the domain for continuity is (-∞,-5] U [5,∞).

2. To check for differentiability, we need to find the derivative of the function. The derivative of y=√(x^2-25) is:

y' = (1/2)(x^2-25)^(-1/2) * 2x
y' = x/√(x^2-25)

Now, we need to ensure that the derivative is defined on the given interval. Since x=5 or x=-5 makes the denominator zero, we should exclude these points. Hence, the interval for differentiability is (-∞,-5) U (5,∞).

Since the MVT requires both continuity and differentiability, the applicable interval(s) for the Mean Value Theorem are (-∞,-5) U (5,∞).

To learn more about Mean value theorem : brainly.com/question/30403137

#SPJ11

7. Maryam purchased a blanket for her mom
from a local department store that was
having a sale. The blanket was offered at
20% off of its original listed price of $26.
How much did Maryam have off of the
original price?

Answers

Answer : 5.2
26 x 0.2 = 5.2

The pdf of X is f(x) = 0.2, 1< x < 6.

(a) Show that this is a pdf(probability distribution function)
(b) Find the cdf F(x).
(c) Find P(2 (d) Find P(X>4).

Answers

(a) The function f(x) = 0.2, 1 < x < 6 is a probability distribution function (pdf) because it is non-negative for all x in its domain and the total area under the curve is equal to 1.

(b) The cumulative distribution function (cdf) F(x) for 1 < x < 6 is given by F(x) = 0.2(x-1), where F(x) = 0 for x ≤ 1 and F(x) = 1 for x ≥ 6.

(c) The probability P(2 < X < 4) is 0.4, which can be calculated by integrating the pdf f(x) = 0.2 over the interval [2, 4].

(d) The probability P(X > 4) is 0.6, which is obtained by subtracting the cumulative probability F(4) = 0.2(4-1) from 1.

(a) To show that f(x) = 0.2, 1 < x < 6 is a probability distribution function (pdf), we need to show that:

f(x) is non-negative for all x in its domain: f(x) = 0.2 is non-negative for all x between 1 and 6.

The total area under the curve of f(x) is equal to 1:

∫1^6 0.2 dx = 0.2(x)|1^6 = 0.2(6-1) = 1

Since both conditions are satisfied, f(x) is a pdf.

(b) The cumulative distribution function (cdf) F(x) is given by:

F(x) = ∫1^x f(t) dt

For 1 < x < 6, we have:

F(x) = ∫1^x 0.2 dt = 0.2(t)|1^x = 0.2(x-1)

For x ≤ 1, F(x) = 0, and for x ≥ 6, F(x) = 1.

(c) P(2 < X < 4) is given by:

P(2 < X < 4) = ∫2^4 f(x) dx = ∫2^4 0.2 dx = 0.2(x)|2^4 = 0.4

(d) P(X > 4) is given by:

P(X > 4) = 1 - P(X ≤ 4) = 1 - F(4) = 1 - 0.2(4-1) = 0.6

To know more about probability refer here:

https://brainly.com/question/30034780

#SPJ11

Enter the length of curve DE, given the curve is 5% longer than line segment AB. ​

Answers

The length of curve DE is equal to 26.25 units.

What is Pythagorean theorem?

In Mathematics and Geometry, Pythagorean's theorem is modeled by the following mathematical expression:

x² + y² = z²

Where:

x, y, and z represents the length of sides or side lengths of any right-angled triangle.

In order to determine the length of the hypotenuse in this right-angled triangle, we would have to apply Pythagorean's theorem as follows;

AC² + BC² = AB²

20² + 15² = AB²

AB² = 400 + 225

AB = √625

AB = 25 units.

For the length of curve DE, we have:

DE = 105% of AB

DE = 1.05 × 25

DE = 26.25 units.

Read more on Pythagorean theorem here: brainly.com/question/15430861

#SPJ1

Rewrite each of the following expressions without using absolute value.


|x−y| , if x

Answers

If an expression for x that does not use an absolute value is y, rewrite |x-y| as x - y.

It is the same as rearranging one expression to plug it into another expression when rewriting algebraic expressions using structure. Solving for one of the variables and then plugging the resulting expression for that variable into the other expression is the initial step to take in these kinds of issues.

Any mathematical statement that includes numbers, variables, and an arithmetic operation between them is known as an expression or algebraic expression. In the phrase 4m + 5, for instance, the terms 4m and 5 are separated from the variable m by the arithmetic sign +.

Here given :

|x−y| , if x then :

y, x - y is rewritten for  |x−y|

Learn more about expressions visit: brainly.com/question/1859113

#SPJ4

Correct Question:

Rewrite each of the following expressions without using absolute value.

1. |x−y| , if x

What is the probability of getting a soft chicken taco? 2) What is the probability of getting a crunch beef taco?

3 What is the probability of getting a fish taco (crunchy or soft)?

Answers

(1) The probability of getting a soft chicken is 16.67%.

(2) The probability of getting a crunch beef is 16.67%.

(3) The probability of getting a fish  (crunchy or soft) is 33.33%.

What is the probability of getting a soft chicken?

The probability of getting a soft chicken is calculated as follows;

total outcome = 6

number of soft chicken = 1

Probability = 1/6 = 16.67%

The probability of getting a crunch beef is calculated as follows;

total outcome = 6

number of crunch beef = 1

Probability = 1/6 = 16.67%

The probability of getting a fish  (crunchy or soft) is calculated as follows;

total outcome = 6

number of soft fish = 1

number of crunch fish  = 1

P(soft or crunch) = 1/6 + 1/6 = 2/6 = 1/3 = 33.33%

Learn more about probability here: https://brainly.com/question/25870256

#SPJ1

here are seven boys and six girls in a class. the teacher randomly selects one student to answer a question. later, the teacher randomly selects a different student to answer another question. find the probability that the first student is a boy and the second student is a girl.

Answers

The probability that the first student is a boy and the second student is a girl is 7/26.

To answer your question, we'll need to calculate the probabilities for each event and then multiply them together.

Probability of selecting a boy first:
There are 7 boys and 13 students total (7 boys + 6 girls), so the probability is 7/13.

Probability of selecting a girl second:
After selecting a boy, there are now 12 students remaining (6 boys + 6 girls). The probability of selecting a girl is 6/12 (which simplifies to 1/2).

Now, multiply the probabilities together: (7/13) × (1/2) = 7/26

So, the probability that the first student is a boy and the second student is a girl is 7/26.

To learn more about probability here:

brainly.com/question/30034780#

#SPJ11

Other Questions
_____ is maintained throughout the auditory system, allowing for processing of sound waves from lower to higher frequencies. 1SUMMARIZE Explain how the poet uses personification to express atheme in "The War Works Hard." A surveyor must determine the distance, AB, across a river. He stands at poirdownriver 500 m from B, and using his theodolite, measures the angle of visA as 28. How wide is the river? Plum Corporation began the month of May with$1,300,000 of current assets, a current ratio of 2.80:1, and an acid-test ratio of 1.60:1. During the month, it completed the following transactions (the company uses a perpetual inventory system).May 2 Purchased $75,000 of merchandise inventory on credit.8 Sold merchandise inventory that cost S55,000 for $160,000 cash.10 Collected $27,000 cash on an account receivable.15 Paid $25,500 cash to settle an account payable.17 Wrote off a $5,000 bad debt against the Allowance for Doubtful Accounts account.22 Declared a $1 per share cash dividend on its 60,000 shares of outstanding common stock.26 Paid the dividend declared on May 22.27 Borrowed $100,000 cash by giving the bank a 30-day, 10% note.28 Borrowed $125,000 cash by signing a long-term secured note.29 Used the $225,000 cash proceeds from the notes to buy new machinery.Required:Calculate Plum's (1) current ratio, (2) acid-test ratio, and (3) working capital after each transaction. An automatic nerve reaction to a stimulus that produces movement is a:A) neuronB) venuleC) reflexD) receptor PLEASE HELP ASAP! How are trenches formed by subduction? Select the correct answer.A glass case is in the shape of a rectangular prism. The volume of the case is cubic foot. How many cubic blocks with a side length of foot wouldbe required to find the volume of the glass case?OA 2OB 3OC. 4D. 5Reset If the following redox reaction occured, which compound would be oxidized? Reduced?C6H6O5 + NAD+ ---> C4H4O5 + NADH + H+CC 9.1 The volume of a triangular prism is increased by a factor of 8. By what factor is the surface area of the figure increased? 2, 4, 16,24 Cul propiedad explica que 20 25 = 25 20 ? what is my first move A complete circuit with a capacitor is turned on. What causes that potential energy produced? The voltage difference across the capacitor. The switch adds energy to the system through the capacitor. The electrons are removed from one side of the capacitor and moved to the other side. The current running through the wire causes the capacitor to heat up, raising the resistance of the wire. select all that apply which of the following may be an advantage of making a part rather than buying it? multiple select question. more dependence on suppliers more reliance on the quality control standards of outside suppliers a smoother flow of parts and materials for production less dependence on outside suppliers in january 2024, a company purchased a patent at a cost of $200,000. legal and filing fees of $50,000 were paid to acquire the patent. the company estimated a 10-year useful life for the patent and uses the straight-line amortization method for all intangible assets. in january 2027, the company spent $40,000 in legal fees for an unsuccessful defense of the patent and the patent is no longer usable. the amount charged to income (expense and loss) in 2027 related to the patent should be: multiple choice $65,000. $215,000. $40,000. $25,000. Lines 30-33 : What is the difference between Shakespeare's version of events an the Chronicles in the second paragraph ? Indeed, effectively executing the PM's primary role of managing trade-offs requires that the PM make trade-offs in a way that best supports the _______.a. organization's overall budgetb. change management systemc. PM's career interests d. organization's overall strategy 1 Probability Density Functions Suppose P[X > x] is given for a continuous random variable X for all x. How would you find the corresponding density function? In particular, find the density function Because I love to read, I like to visit the library; additionally, I enjoy going to book stores. Question 11 options: simple compound complex compound-complexhich type of sentence is this: Because I love to read, I like to visit the library; additionally, I enjoy going to book stores. Question 11 options: simple compound complex compound-complex what is the difference between the computational diffie-hellman (cdh) problem and the decisional diffie-hellman (ddh) problem? The distribution of the standard normal distribution (2) 1) has skinnier tails than the t-distribution. 2) has fatter tails than the t-distribution. 3) has a mean different than a t-distribution. 4) has a larger standard deviation than the t-distribution.