Suppose the final step of a Gauss-Jordan elimination is as follows: 11 0 0 51 0 1 21-3 LO 0 ol What can you conclude about the solution(s) for the system?

Answers

Answer 1

We can conclude that the system represented by the given Gauss-Jordan elimination has infinitely many solutions, and the values of the variables can be expressed in terms of a free variable x4.

The Gauss-Jordan elimination is a method used to solve a system of linear equations. The final step of the method is to transform the augmented matrix of the system into reduced row echelon form, which allows for easy identification of the solution(s) of the system.

In the given final step of the Gauss-Jordan elimination, the augmented matrix of the system is represented as:

11 0 0 51

0  1 0 21

0  0 1 -3

0  0 0  0

The augmented matrix is in reduced row echelon form, where the leading coefficients of each row are all equal to 1, and there are no other non-zero elements in the same columns as the leading coefficients. The last row of the matrix corresponds to the equation 0 = 0, which represents an identity that does not provide any new information about the system.

The system represented by this matrix is:

11x1 + 51x4 = 0

x2 + 21x4 = 0

x3 - 3x4 = 0

We can see that the third row of the matrix corresponds to an equation of the form 0x1 + 0x2 + 0x3 + 0x4 = 0, which indicates that the variable x4 is a free variable. This means that the system has infinitely many solutions, and the value of x4 can be chosen arbitrarily.

The values of x1, x2, and x3 can be expressed in terms of x4 using the equations given by the first three rows of the matrix. For example, we can solve for x1 as follows:

11x1 + 51x4 = 0

x1 = -51/11 x4

Similarly, we can solve for x2 and x3:

x2 = -21 x4

x3 = 3 x4

Therefore, the general solution of the system is:

x1 = -51/11 x4

x2 = -21 x4

x3 = 3 x4

x4 is a free variable

In summary, we can conclude that the system represented by the given Gauss-Jordan elimination has infinitely many solutions, and the values of the variables can be expressed in terms of a free variable x4.

To learn more about represented visit:

https://brainly.com/question/13246446

#SPJ11


Related Questions

Use Wallis's Formulas to evaluate the integral.

∫ cos^7 (x) dx

Answers

The value of the integral ∫ [tex]cos^7(x) dx[/tex] is[tex](3\pi /32).[/tex]

Wallis's formulas are used to evaluate integrals of the form:

∫ [tex]sin^{n(x)} cos^{m(x)} dx[/tex]

where n and m are non-negative integers. We can use the trigonometric identity[tex]cos^{2(x)] + sin^{2(x)} = 1[/tex] to convert the powers of cosine to powers of sine.

Here, we have m = 7, so we can use the identity [tex]cos^{2(x)} = 1 - sin^{2(x)}[/tex] to write:

[tex]cos^{7(x)} = cos^{6(x)}[/tex] × [tex]cos(x)[/tex]

[tex]= (1 - sin^2(x))^3[/tex] ×[tex]cos(x)[/tex]

Now, we can use a substitution of [tex]u = sin(x), du = cos(x) dx[/tex]to convert the integral to a form that can be evaluated using Wallis's formulas:

∫ [tex]cos^7(x) dx =[/tex] ∫ [tex](1 - sin^2(x))^3[/tex] × [tex]cos(x) dx[/tex]

= ∫ [tex](1 - u^2)^3 du[/tex]

Using Wallis's formulas, we have:

∫ [tex](1 - u^2)^3 du = (1/8)[/tex]× β[tex](4, 4)[/tex]

[tex]= (1/8)[/tex] ×[tex][(3\pi /4) / sin(3\pi /4)][/tex]

[tex]= (3\pi /32)[/tex]

Substituting [tex]u = sin(x)[/tex], we have:

∫ [tex]cos^7(x) dx =[/tex] ∫ [tex](1 - u^2)^3 du = (3π/32)[/tex]

Therefore, the value of the integral ∫ [tex]cos^7(x) dx[/tex] is [tex](3\pi /32).[/tex]

To know more about Wallis's Formula visit:

https://brainly.com/question/31475773

#SPJ4

Simplify (step by steps, thanks!)

Answers

The simplified expression is given by (x² - 3x - 3) / ((x + 3)(x - 2)(x - 4)).

To simplify this expression, we need to find a common denominator for the two fractions and then combine them. To do this, we need to factor the denominators of both fractions.

Let's start with the first fraction's denominator:

x² + x - 6

We need to find two numbers that multiply to -6 and add to +1. These numbers are +3 and -2. Therefore, we can write:

x² + x - 6 = (x + 3)(x - 2)

Now let's factor the second fraction's denominator:

x² - 6x + 8

We need to find two numbers that multiply to 8 and add to -6. These numbers are -2 and -4. Therefore, we can write:

x² - 6x + 8 = (x - 2)(x - 4)

Now we can rewrite the original expression with a common denominator:

(x(x - 2) - (1)(x + 3)) / ((x + 3)(x - 2)(x - 4))

Next, we can simplify the numerator:

(x² - 2x - x - 3) / ((x + 3)(x - 2)(x - 4))

(x² - 3x - 3) / ((x + 3)(x - 2)(x - 4))

Finally, we can't simplify this expression any further. Therefore, the simplified expression is:

(x² - 3x - 3) / ((x + 3)(x - 2)(x - 4))

To know more about expression here

https://brainly.com/question/14083225

#SPJ1

Linearity of expectation II) Let X,Y be random variables and a,b,c be constants. Use properties of integration/summation to show that E(aX+bY +c)= aEX +bEY + c Consider both the discrete and continuous cases.

Answers

In the case of discrete random variables, the expectation of a function is defined as the sum of the function's values multiplied by their probabilities:

E(aX + bY + c) = ∑(aX + bY + c)P(X,Y)

We can break down the sum using properties of summation:

= a∑XP(X,Y) + b∑YP(X,Y) + c∑P(X,Y)

Since the sum of probabilities over all events equals 1:

= aE(X) + bE(Y) + c

For the continuous case, the expectation of a function is defined as the integral of the function's values multiplied by the joint probability density function (PDF):

E(aX + bY + c) = ∫∫(aX + bY + c)f(X,Y)dXdY

We can break down the integral using properties of integration:

= a∫∫Xf(X,Y)dXdY + b∫∫Yf(X,Y)dXdY + c∫∫f(X,Y)dXdY

Again, since the integral of the joint PDF over all events equals 1:

= aE(X) + bE(Y) + c

Thus, we have shown that for both discrete and continuous cases, the linearity of expectation holds:

E(aX + bY + c) = aE(X) + bE(Y) + c

To learn discrete random variable : brainly.com/question/17238189

#SPJ11

a normal distribution has mean 12 and standard deviation of 9. what is the standard normal random variable z transformed from x

Answers

To find the standard normal random variable z transformed from x, we first need to calculate the z-score of x. The formula for the z-score is:

z = (x - mean) / standard deviation

Substituting the values given in the question, we get:

z = (x - 12) / 9

We can then transform this equation to solve for x in terms of z:

x = mean + z * standard deviation

Substituting the values for mean and standard deviation, we get:

x = 12 + z * 9

Therefore, the standard normal random variable z transformed from x is:

x = 12 + z * 9
To transform a given value (x) from a normal distribution with mean (μ) and standard deviation (σ) to a standard normal random variable (z), you can use the z-score formula:

z = (x - μ) / σ

In this case, the normal distribution has a mean (μ) of 12 and a standard deviation (σ) of 9. To transform any value x from this distribution to a standard normal random variable (z), you can follow these steps:

Step 1: Subtract the mean (μ) from the given value (x).
z = (x - 12)

Step 2: Divide the result by the standard deviation (σ).
z = (x - 12) / 9

Now you have the formula to transform any value x from the given normal distribution to a standard normal random variable (z).

Learn more about the standard deviation here:- brainly.com/question/23907081.

#SPJ11

tais is shipping a coat to her grandmother when folded the coat has a volume of 10,000 cubic centimeters is a box with the dimensions shown large to ship the coat explain your answer.

Answers

Answer: The box is large enough to ship the coat.

15000cm to the power of 3>10000cm to the power of 3

Step-by-step explanation:

V box=25x30x20

         =750+20

         =15000cm to the power of 3

So the box is large enough to ship the coat

A manufacturer claims that the average life of his electric light bulbs is greater than 2000 hours. A random sample of 64 bulbs is tested and the life in hours is recorded. The results are as follows:
x= 2008 hours
s = 12.31 hours
Is there sufficient evidence at the 2% level to support the manufacturer's claim?
a. State the null and alternative hypotheses.
b. State the critical value.
c. Calculate the relevant test statistic. Does it fall in the region of acceptance or rejection?
d. Calculate the p-value. Compare it to the significance level.
e. Do you reject the null hypothesis?
f. Do you reject the claim?

Answers

The evidence supports the claim that the average life of electric light bulbs is greater than 2000 hours.

a. Null Hypothesis: The average life of electric light bulbs is not greater than 2000 hours. Alternative Hypothesis: The average life of electric light bulbs is greater than 2000 hours.

b. The critical value for a one-tailed test at the 2% level of significance with 63 degrees of freedom is 2.33.

c. The relevant test statistic is:
t = (x - μ) / (s / √n)=[tex]= \frac{(2008 - 2000)}{\frac{12.31}{\sqrt{64}}}= 13.03[/tex]
Since the test statistic is greater than the critical value of 2.33, we can reject the null hypothesis and conclude that there is sufficient evidence to support the claim.

d. The p-value is the probability of obtaining a test statistic as extreme or more extreme than the observed value, assuming the null hypothesis is true. Using a t-distribution table with 63 degrees of freedom, the p-value is less than 0.01. Since the p-value is less than the significance level of 0.02, we can reject the null hypothesis.

e. Yes, we reject the null hypothesis.

f. No, we do not reject the claim. The evidence supports the claim that the average life of electric light bulbs is greater than 2000 hours.

To know more about hypothesis testing visit:

https://brainly.com/question/28920252

#SPJ11

what is 48 - 36 and then divided by 36

Answers

Answer

The result of 48 - 36 is 12. Then, if you divide 12 by 36, the result is 0.3333 or 1/3.

Step-by-step explanation:

The Transportation Safety Authority (TSA) has developed a new test to detect large amounts of liquid in luggage bags. Based on many test runs, the TSA determines that if a bag does contain large amounts of liquid, there is a probability of 0. 98 the test will detect it. If a bag does not contain large amounts of liquid, there is a 0. 07 probability the test will conclude that it does (a false positive). Suppose that in reality only 4 in 100 bags actuallycontain large amounts of liquid.

1. What is the probability a randomly selected bag will have apositive test? Give your answer to four decimal places.

2. Given a randomly selected bag has a positive test, what is theprobability it actually contains a large amount of liquid? Giveyour answer to four decimal places.

3. Given a randomly selected bag has a positive test, what is theprobability it does not contain a large amount of liquid? Give youranswer to four decimal places

Answers

1. What is the probability a randomly selected bag will have a positive test? Give your answer to four decimal places is 0.1032

2. Given a randomly selected bag has a positive test, what is the probability it actually contains a large amount of liquid is 0.3780

3. Given a randomly selected bag has a positive test, what is the probability it does not contain a large amount of liquid is  0.6219

Let's characterize the taking after occasions:

A: The pack contains huge sums of fluid.

B: The test is positive.

We are given the taking after probabilities:

P(A) = 0.04

P(B | A) = 0.98

P(B | not A) = 0.07

1. To discover the likelihood of a positive test, we are able to utilize the law of adding up to likelihood:

P(B) = P(B | A) P(A) + P(B | not A) P(not A)

= 0.98 * 0.04 + 0.07 * 0.96

= 0.1032

So the likelihood of a haphazardly chosen pack having a positive test is 0.1032 (adjusted to four decimal places).

2. To discover the likelihood that a sack really contains large amounts of fluid given a positive test, we are able to utilize Bayes' hypothesis:

P(A | B) = P(B | A) P(A) / P(B)

= 0.98 * 0.04 / 0.1032

= 0.3780

So the likelihood that a pack really contains expansive sums of fluid given a positive test is 0.3780 (adjusted to four decimal places).

3. To discover the likelihood that a sack does not contain expansive sums of fluid given a positive test, ready to utilize Bayes' hypothesis again:

P(not A | B) = P(B | not A) P(not A) / P(B)

= 0.07 * 0.96 / 0.1032

= 0.6219

So the likelihood that a pack does not contain expansive sums of fluid given a positive test is 0.6219 (adjusted to four decimal places). 

To know more about probability refer to this :

https://brainly.com/question/24756209

#SPJ4

Somebody help me I need the answer?

Answers

For equation A+C=B the matrix C is [tex]\left[\begin{array}{ccc}-2&-7\\-5&8\end{array}\right][/tex] and C-B=A then C is [tex]\left[\begin{array}{ccc}2&-9\\7&0\end{array}\right][/tex]

The given matrix A = [tex]\left[\begin{array}{ccc}2&-1\\6&-4\end{array}\right][/tex]

B=[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]

Now the equation is A+C=B

[tex]\left[\begin{array}{ccc}2&-1\\6&4\end{array}\right][/tex]+C  =[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]

C=[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]- [tex]\left[\begin{array}{ccc}2&-1\\6&-4\end{array}\right][/tex]

C=[tex]\left[\begin{array}{ccc}-2&-7\\-5&8\end{array}\right][/tex]

Now equation is C-B=A

C=A+B

= [tex]\left[\begin{array}{ccc}2&-1\\6&-4\end{array}\right][/tex]+[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]

C=[tex]\left[\begin{array}{ccc}2&-9\\7&0\end{array}\right][/tex]

Hence, for equation A+C=B the matrix C is [tex]\left[\begin{array}{ccc}-2&-7\\-5&8\end{array}\right][/tex] and C-B=A then C is [tex]\left[\begin{array}{ccc}2&-9\\7&0\end{array}\right][/tex]

To learn more on Matrices click:

https://brainly.com/question/28180105

#SPJ1

Determine whether the relationship is a function. Complete the explanation.
(6, 3), (5, 6), (-1, 1), (6, 9), (8,8)
Since (select)
(select) a function.
Input value is paired with (select)
output value, the relationship

Answers

The given relationship in the task content is not a function as more than one output value is paired with the same input value.

Is the given relationship a function?

Recall that a relationship is said to be a function only if one output value is attached to each input value of the relationship.

On this note, by observation; the pair of coordinates (6, 3) and (6, 9) implies that two output values are assigned to the same input value. Consequently, the given relationship is not a function.

The complete and correct sentence is therefore; Since one input value is paired with two output values; the relationship is not a function.

Read more on function;

https://brainly.com/question/17079187

#SPJ1

Alex painted 178 ft2 of his apartment’s walls with 13 1 3 gallon of paint. He has 2 gallons of paint in all. If he wants to cover 1,000 ft2 of his apartment, does he have enough paint? Complete a true statement

Answers

From multiplcation operation, Alex has enough paint to cover 1,000 ft² of his apartment. The true statement is 2 gallons of paint will cover 1068 ft², Alex have enough paint of quantity 2 gallons.

We have Mr. Alex painted his apartment. Area of his apartment'walls = 178 ft²

Quantity of paint used by him to paint his apartment'walls with area 178 ft² =[tex] \frac{1}{3} \: \: gallons[/tex]

Total quantity of paint used in all

= 2 gallons

We have to check the provide paint is enough or not to cover 1,000 ft² of his apartment. Let the required paint for 1000 ft² be x gallons. Using multiplcation, 1/3 gallons quantity of paint will cover the area of apartment = 178 ft², so, 1 gallons quantity of paint will cover the area of apartment = 178 ×3 ft²= 534 ft²

Now, 2 gallons quantity of paint will cover the area of apartment = 2× 534 ft² = 1068 ft²> 1000 ft²

But he wants to paint 1000 ft² of his apartment in 2 gallons quantity (x=1.9 gal ). So, he has enough paint to paint his apartment.

For more information about multiplcation, visit:

https://brainly.com/question/28773316

#SPJ4

Complete question:

The above figure complete the question.

Alex painted 178 ft2 of his apartment’s walls with 1/3 gallon of paint. He has 2 gallons of paint in all. If he wants to cover 1,000 ft2 of his apartment, does he have enough paint? Complete a true statement

Write a general form of an explicit function for what the nth term of any arithmetic sequence would be in terms of a and d. Use the form below to write your function. Type the correct answer in the box.

(CORRECT ANSWER SHOWN IN PICTURE)

Answers

Answer:

Step-by-step explanation:

Evaluate the given integral by changing to polar coordinates. integral integral_R sin(x^2 + y^2) dA, where R is the region in the first quadrant between the circles with center the origin and radii 2 and 3

Answers

To evaluate the given integral by changing to polar coordinates, we first need to determine the limits of integration in polar form. The region R is in the first quadrant and is bounded by the circles with the center of the origin and radii 2 and 3. In polar coordinates, the equation of a circle centered at the origin is given by r = a, where a is the radius.

So, the equations of the two circles are:

r = 2  and  r = 3

Since the region R is between these two circles, the limits of integration for r are:

2 ≤ r ≤ 3

To determine the limits of integration for θ, we need to consider the quadrant in which the region R lies. Since R is in the first quadrant, we have:

0 ≤ θ ≤ π/2

Now, we can express the integrand sin(x^2 + y^2) in terms of polar coordinates:

sin(x^2 + y^2) = sin(r^2)

Therefore, the integral in polar coordinates is:

∫∫R sin(x^2 + y^2) dA = ∫ from 0 to π/2 ∫ from 2 to 3 sin(r^2) r dr dθ

This integral can be evaluated using standard techniques of integration.
To evaluate the integral using polar coordinates, we first need to express the given region R and the integrand in terms of polar coordinates. In polar coordinates, x = r*cos(θ) and y = r*sin(θ), so x^2 + y^2 = r^2.

The region R is in the first quadrant and is bounded by the circles with radii 2 and 3. In polar coordinates, this translates to 0 ≤ θ ≤ π/2, 2 ≤ r ≤ 3.

Now we can rewrite the integral as:

integral_integral_R sin(x^2 + y^2) dA
= integral (θ=0 to π/2) integral (r=2 to 3) sin(r^2) * r dr dθ

Now we can evaluate the integral step by step:

1. Integrate with respect to r:
integral (θ=0 to π/2) [(-1/2)cos(r^2)] (from r=2 to r=3) dθ
= integral (θ=0 to π/2) [(-1/2)(cos(9) - cos(4))] dθ

2. Integrate with respect to θ:
[(-1/2)(cos(9) - cos(4))]*(θ evaluated from 0 to π/2)
= [(-1/2)(cos(9) - cos(4))] * (π/2)

So the final answer is:

(π/2)(-1/2)(cos(9) - cos(4))

Learn more about circles here:- brainly.com/question/11833983

#SPJ11

probability
selected point within the circle falls in the
red-shaded square.
4
5
5
P = [?]
Enter as a decimal rounded to the nearest hundredth.
Enter

Answers

The probability that the point lies on the square is P = 0.498

How to find the probability?

to find that probability, we need to take the quotient between the area of the square and the area of the circle.

We can see that the square has a side length of 5 units, then its area is.

A = 5*5 = 25 square units.

The circle has a radius of 4 units, then its area is:

A' = 3.14*4^2 = 50.24 square units

Then the probability is:

P = 25/50.24 = 0.498

Learn more about probability at:

https://brainly.com/question/25870256

#SPJ1

1. Prove that each function is uniformly continuous on the given set by directly verifying the E - 8 property in Definition 5.4.1. (a) f(x) = x^3 on (0,2] (b) f(x)= 1/2 on (2,[infinity] ) (c) f(x) = x-1 /x+1 on (0,[infinity] ) 4.1 DEFINITION Let f:D R. We say that f is uniformly continuous on Dif for every e > 0 there exists a 8 >0 such that Sx)-f()

Answers

a. At (0,2] f is uniformly continuous.

b. At (2,∞) f is uniformly continuous.

c. At (0,∞) f is uniformly continuous.

What is function?

A function connects an input with an output. It is analogous to a machine with an input and an output. And the output is somehow related to the input. The standard manner of writing a function is f(x) "f(x) =... "

(a) Let f(x) = x³ on (0,2]. Let ε > 0 be given. We need to find a δ > 0 such that |x - y| < δ implies |f(x) - f(y)| < ε for all x,y in (0,2]. Note that |f(x) - f(y)| = |x³ - y³| = |x - y||x² + xy + y²|. Since x,y ∈ (0,2], we have x² + xy + y² ≤ 12. Thus, if we choose δ = ε/12, then for any x,y ∈ (0,2] such that |x - y| < δ, we have |f(x) - f(y)| < ε. Hence, f is uniformly continuous on (0,2].

(b) Let f(x) = 1/2 on (2,∞). Let ε > 0 be given. We can choose any δ > 0 since for any x,y ∈ (2,∞), we have |f(x) - f(y)| = 0 < ε. Thus, f is uniformly continuous on (2,∞).

(c) Let f(x) = (x-1)/(x+1) on (0,∞). Let ε > 0 be given. We need to find a δ > 0 such that |x - y| < δ implies |f(x) - f(y)| < ε for all x,y in (0,∞). Note that |f(x) - f(y)| = |(x-1)/(x+1) - (y-1)/(y+1)| = |(x-y)(2/(x+1)(y+1))|. Thus, if we choose δ = ε/2, then for any x,y in (0,∞) such that |x - y| < δ, we have |f(x) - f(y)| = |(x-y)(2/(x+1)(y+1))| < ε. Hence, f is uniformly continuous on (0,∞).

Learn more about functions on:

https://brainly.com/question/10439235

#SPJ11

Steven cleans his aquarium by replacing 2/3 or the water with new water, but that doesn’t clean the aquarium to his satisfaction. He decides to repeat the process, again replacing 2/3 of the water with new water. How many times will Steven have to do this so that at least 95% of the water is new water?

Help as quickly as possible!!!

Answers

Steven will have to repeat the process three times so that at least 95% of the water is new water

What are the exact values of the cosecant, secant, and cotangent ratios of 5pi/6?

Answers

The exact values of the cosecant, secant, and cotangent ratios of 5π/6 are 2, -2/√3, and -√3, respectively.

Solution to the cosecant, secant and cotangent

To find the exact values of the cosecant, secant, and cotangent ratios of an angle of 5π/6, we need to use the definitions of these trigonometric functions and the values of the sine, cosine, and tangent of this angle.

First, we can find the sine and cosine of 5π/6 using the unit circle or reference angles:

sin(5π/6) = sin(π/6) = 1/2

cos(5π/6) = -cos(π/6) = -√3/2

Then, we can use the definitions of the cosecant, secant, and cotangent ratios:

cosec(5π/6) = 1/sin(5π/6) = 1/(1/2) = 2

sec(5π/6) = 1/cos(5π/6) = -2/√3

cot(5π/6) = cos(5π/6)/sin(5π/6) = (-√3/2)/(1/2) = -√3

Therefore, the exact values of the cosecant, secant, and cotangent ratios of 5π/6 are 2, -2/√3, and -√3, respectively.

Learn more about secant here:

https://brainly.com/question/29044147

#SPJ1

to calculate the probability that if a woman has four children, they will all be girls, you should use the rule of blank .

Answers

The probability of a woman having four girls in a row is 6.25%.

To calculate the probability that if a woman has four children, they will all be girls, you should use the rule of multiplication. This rule states that to calculate the probability of two or more independent events occurring together, you multiply the probability of each individual event. In this case, the probability of each child being a girl is 0.5 (assuming an equal chance of having a boy or girl), so you would calculate the probability as 0.5 x 0.5 x 0.5 x 0.5 = 0.0625 or 6.25%. Therefore, the probability of a woman having four girls in a row is 6.25%.

learn more about probability

https://brainly.com/question/30034780

#SPJ11

"subject : signals and systems
question: convolution sum/integral?"1. Perform each of the following addition or subtraction operations. Express your answers in simplest form and state any non-permissible values.
a. 4x/2x+5 + 10/2x+5
b. 3y/8 - 5/6y

Answers

The simplified difference is:

3y/8 - 5/6y = (-y)/24

Note that there are no non-permissible values in this case.

a. 4x/(2x+5) + 10/(2x+5)

To add these two expressions, we need to find a common denominator. In this case, the common denominator is (2x+5):

4x/(2x+5) + 10/(2x+5) = (4x+10)/(2x+5)

Now we can simplify the numerator by factoring out a 2:

(4x+10)/(2x+5) = 2(2x+5)/(2x+5)

And we can cancel out the common factor of (2x+5):

2(2x+5)/(2x+5) = 2

Therefore, the simplified sum is:

4x/(2x+5) + 10/(2x+5) = 2

Note that the non-permissible value is x = -2.5, since this value would make the denominator equal to zero.

b. 3y/8 - 5/6y

To subtract these two expressions, we also need a common denominator. In this case, the common denominator is 24y:

3y/8 - 5/6y = (9y^2)/(24y) - (20y)/(24y)

We can simplify the first term in the numerator by canceling out a common factor of 3:

([tex]9y^2[/tex])/(24y) = (3y)/8

So the subtraction becomes:

3y/8 - 5/6y = (3y)/8 - (10y)/12

Now we can find a common denominator of 24:

(3y)/8 - (10y)/12 = (9y)/24 - (10y)/24

Simplifying the numerator gives:

(9y)/24 - (10y)/24 = (-y)/24

Therefore, the simplified difference is:

3y/8 - 5/6y = (-y)/24

Note that there are no non-permissible values in this case.

To learn more about difference visit:

https://brainly.com/question/30461754

#SPJ11

Laplace and Inverse Laplace Transforms Using MATLAB Laplace Transform Syntax: laplace (f) Example 1: f(t) = 5sin (3t) Code: >>symst >>f=5* sin(3*t); >>laplace(f) Example 2: f(t) = (t - 2)2U(t - 2) Code: >>symst >>f=(t-2)^2*heaviside(t-2) >>F=laplace(f)

Answers

The Laplace transform is a mathematical tool used to transform a function of time into a function of complex frequency. The inverse Laplace transform does the opposite, transforming a function of complex frequency back into a function of time.

In MATLAB, you can use the "laplace" function to compute the Laplace transform of a given function. The syntax for the "laplace" function is: laplace(f), where f is the function you want to transform.

For example, in Example 1, the function f(t) = 5sin(3t) is defined using MATLAB's symbolic math toolbox by typing ">>symst" to activate symbolic math, followed by ">>f=5* sin(3*t);" to define the function. The Laplace transform of this function is then computed using the "laplace" function as follows: ">>laplace(f)".

Similarly, in Example 2, the function f(t) = (t - 2)^2U(t - 2) is defined using MATLAB's "heaviside" function to represent the unit step function. The Laplace transform of this function is then computed using the "laplace" function as follows: ">>F=laplace(f)".

https://brainly.com/question/30579487

#SPJ11

PLEASE HELP I CANT DO IT I DONT UNDERSTAND THIS AND MY TEACHER DOESNT KNOW HOW TO EXPLAIN PROPERLY !
Use a net to find the surface area of the prism.

Answers

Answer:

[tex]SA=1657 cm^2[/tex]

Step-by-step explanation:

Surface Area Formula for Rectangular Prism.

[tex]SA=2*[ (l*h) + (w*h) + (l*w)][/tex]

Your l = 15 cm , w = 6.5 cm , and h = 34 cm.

Plug these values into the equation.

[tex]SA=2*[ (15*34) + (6.5*34) + (15*6.5)][/tex]

[tex]SA=2*[(510)+(221)+(97.5)][/tex]

[tex]SA=2*[510+221+97.5][/tex]

[tex]SA=2*(828.5)[/tex]

[tex]SA=1657 cm^2[/tex]

Simplify the following power into one power

Answers

The simplified form of the given expression written into one power is 3⁰

Simplifying an expression

From the question, we are to simplify the given expression into one power

The given expression is

[tex]\frac{(3^{2})^{2}}{3 \ \cdot \ 3^{3}}[/tex]

To simplify the expression, we will implore the laws of indices

Simplifying the expression

[tex]\frac{(3^{2})^{2}}{3 \ \cdot \ 3^{3}}[/tex]

[tex]\frac{(3^{2\times 2})}{3^{1+3}}[/tex]

[tex]\frac{3^{4}}{3^{4}}[/tex]

Applying the division law of indices

[tex]3^{4-4}[/tex]

[tex]3^{0}[/tex]

Hence, the simplified expression is 3⁰

Learn more on Simplifying an expression here: https://brainly.com/question/15361818

#SPJ1

Doni claims that
39
24
< 1.
a. Enter a single digit whole number for y that supports Doni's claim.
inho
b. Enter a single digit whole number for y that does not support Doni's claim.

Answers

0 is a single digit whole number for y that supports Doni's claim.

2 is a single digit whole number for y that does not supports Doni's claim.

Doni claims that [tex]\frac{3^y}{2^y} \leq 1[/tex]

We have to find a single digit whole number for y that supports Doni's claim.

Let 0 be the single digit whole number for y that supports Doni's claim.

1/1≤1

Now let us find  single digit whole number for y that does not support Doni's claim.

2 be the whole number

9/4≤1

2.25≤1

To learn more on Inequality click:

https://brainly.com/question/28823603

#SPJ1

Janie is selling tickets for a high school play. Child tickets cost $3 and adult tickets cost $14.
She sells 215 tickets and collects $1965.

Answers

Answer:

A = 120; C = 95

Step-by-step explanation:

We will need a system of equations to solve for C, the number of child tickets and A, the number of adult tickets.

We know that the sum of the revenue earned from both the child tickets and the adult tickets = the total revenue

(price of child tickets * quantity of child tickets) + (price of adult tickets * quantity of adult tickets) = 1965

Thus, our first equation is 3C + 14A = 1965

We also know that the sum of the total number of child and adult tickets = the the total number of tickets

total quantity of child tickets + total quantity of adult tickets = 215

Thus, our other equation is C + A = 215

We can solve using substitution by first isolating c in the second equation:

[tex]C+A=215\\C=-A+215[/tex]

Now, we can plug in the equation we just made for C in the first equation in our system to solve for A:

[tex]3(-A+215)+14A=1965\\-3A+645+14A=1965\\11A+645=1965\\11A=1320\\A=120[/tex]

Finally, we can solve for C using the second equation in our system by plugging in 120 for A:

[tex]C+120=215\\C=95[/tex]

3.3.5. For The Following Functions, Sketch The Fourier Cosine Series Of F(X) And Determine Its Fourier Coefficients: 1 X

Answers

As we add more terms to the series, the plot approaches the original function f(x) = 1/x. Note that the series is only defined for x > 0, since f(x) is not defined at x = 0.

To sketch the Fourier cosine series of f(x) = 1/x, we need to first determine the Fourier coefficients. Recall that the Fourier cosine series is given by:

f(x) = a0/2 + ∑[n=1 to ∞] an cos(nπx/L)

where L is the period of the function (in this case, L = 2), and the Fourier coefficients are given by:

an = (2/L) ∫[0 to L] f(x) cos(nπx/L) dx

Using f(x) = 1/x, we can compute the Fourier coefficients as follows:

a0 = (2/L) ∫[0 to L] f(x) dx
  = (2/2) ∫[0 to 2] 1/x dx
  = ∞ (divergent)

an = (2/L) ∫[0 to L] f(x) cos(nπx/L) dx
  = (2/2) ∫[0 to 2] (1/x) cos(nπx/2) dx
  = (-1)^n π/2 (n ≠ 0)

Note that a0 is divergent, which means that the Fourier cosine series of f(x) will not have a constant term. Therefore, the Fourier cosine series of f(x) is given by:

f(x) = ∑[n=1 to ∞] (-1)^n π/2 cos(nπx/2)

To sketch this series, we can plot the partial sums of the series for a few values of n. For example, we can plot:

f1(x) = (-1)^1 π/2 cos(πx/2)
f2(x) = (-1)^1 π/2 cos(πx/2) + (-1)^2 π/2 cos(2πx/2)
f3(x) = (-1)^1 π/2 cos(πx/2) + (-1)^2 π/2 cos(2πx/2) + (-1)^3 π/2 cos(3πx/2)

and so on, up to some value of n. Here is what the plots look like for n = 1, 2, and 3:

Know more about function here:

https://brainly.com/question/12431044

#SPJ11


a) - A casual LTI discrete-time system develops an output y[n] = (0.4)"u(n) - 0.3(0.4)n-1u(n − 1). for the input x[n] = (0.2)"u(n). (i) Determine the transfer function of the system (ii) Determine the difference equation characterizing the system

Answers

(i) The transfer function of the system is:

H(z) = (0.4)^z / (0.2)^z - 0.3(0.4)^(z-1) / (0.2)^{z-1} - 2

(ii) The difference equation characterizing the system is:
y[n] = (0.4)^n x[n] - 0.3(0.4)^(n-1) x[n-1]

(i) To determine the transfer function of the system, we can take the Z-transform of both the input and output:

X(z) = (0.2)^z / (z - 0.4)
Y(z) = (0.4)^z / (z - 0.4) - 0.3(0.4)^(z-1) / (z - 0.4)

Then we can solve for the transfer function H(z) by dividing Y(z) by X(z):

H(z) = Y(z) / X(z)
    = (0.4)^z / (z - 0.4) - 0.3(0.4)^(z-1) / (z - 0.4) * (z - 0.4) / (0.2)^z
    = (0.4)^z / (0.2)^z - 0.3(0.4)^(z-1) / (0.2)^{z-1} - 2

So the transfer function of the system is H(z) = (0.4)^z / (0.2)^z - 0.3(0.4)^(z-1) / (0.2)^{z-1} - 2.

(ii) To determine the difference equation characterizing the system, we can use the formula for the output y[n] of a discrete-time LTI system with input x[n]:

y[n] = sum{k=0}{N-1} h[k] x[n-k]

where h[k] is the impulse response of the system. In this case, the impulse response can be found by setting x[n] = delta[n], the unit impulse function, and solving for y[n]:

h[n] = y[n] / delta[n]
    = (0.4)^n - 0.3(0.4)^(n-1)

So the difference equation characterizing the system is:

y[n] = (0.4)^n x[n] - 0.3(0.4)^(n-1) x[n-1]

To learn more about transfer function visit : https://brainly.com/question/24241688

#SPJ11

Mr. Miller's field of vision is 140 degrees, as shown in the diagram below. From his beach house he can see ships on the horizon up to 4 miles away. O B. 12.6 miles O C. 19.5 miles Mr. Miller's Field of Vision Horizon ? OD rs 4 miles To the nearest tenth of a mile, how many miles of the horizon can Mr. Miller see along the arc of his field of vision? O A. 9.8 miles 140⁰ Mr. Miller's position​

Answers

To the nearest tenth of a mile, Mr. Miller can see 9.8 miles of the horizon along the arc of his field of vision.

Based on the given information, we can use the formula for the arc length of a circle to find how much of the horizon Mr. Miller can see within his field of vision.

The formula for the arc length of a circle is:

arc length = (angle/360) x 2πr

where angle is the central angle of the arc in degrees, r is the radius of the circle, and 2πr is the circumference of the circle.

In this case, the central angle of the arc is 140 degrees, and the radius of the circle is the distance to the horizon, which is 4 miles. We can substitute these values into the formula:

arc length = (140/360) x 2π x 4

arc length = 0.388 x 8π

arc length = 9.8 miles

Therefore, to the nearest tenth of a mile, Mr. Miller can see 9.8 miles of the horizon along the arc of his field of vision.

Learn more about arc length here:

https://brainly.com/question/29011796

#SPJ1

If 125 ^ x = 625/(5 ^ (- x)) * I find the value of x.

Answers

The solution of the given equation is x = 2.

How to solve the equation for x?

Here we have the following equation that we want to solve, it is:

[tex]125^x = \frac{625}{5^{-x}}[/tex]

We want to solve this for x, remember that a negative exponent means that we need to take the inverse, then we can rewrite the right side as:

[tex]125^x = \frac{625}{5^{-x}} = 625*5^x[/tex]

Now we can divide both sides by 5^x to get:

[tex]125^x = \frac{625}{5^{-x}} = 625*5^x\\\\(125/5)^x = 625\\\\25^x = 625\\\\[/tex]

Now we can apply the natural logarithm in both sides, we will get:

[tex]ln(25^x) = ln(625)\\\\x*ln(25) = ln(625)\\x = ln(625)/ln(25)\\\\x = 2[/tex]

That is the solution.

Learn more about logarithms at:

https://brainly.com/question/13473114

#SPJ1

Solve 1/3x- 1 = 5.

A. x = 12
B. x = 18
C. x = 1
D. x=2

Answers

Answer:

option B: x= 18

Step-by-step explanation:

To solve 1/3x - 1 = 5, we can start by adding 1 to both sides of the equation:

1/3x - 1 + 1 = 5 + 1

Simplifying:

1/3x = 6

Multiplying both sides by 3:

3(1/3x) = 3(6)

Simplifying:

x = 18

Therefore, the solution is x = 18, which is option B.

Find the value of each variable.
y
X =
30
X
8
60°
=and y=
(Simplify your answers. Type exact answers, using radicals as needed.)
www

Answers

The value of variable x and y in the right triangle are 4 and 4√3 units respectively.

How to find the side of a right angle triangle?

A right angle triangle is a triangle that has one of its angles as 90 degrees.

The variable x and y can be as follows:

cos 60° = adjacent / hypotenuse

cos 60° = x / 8

cross multiply

x = 8 cos 60°

x = 8 × 0.5

x = 4 units

Let's find the value of y as follows:

sin 60° = opposite / hypotenuse

Therefore,

sin 60° =  y / 8

cross multiply

y = 8 sin 60

y = 8 × √3 / 2

y = 4√3 units  

learn more on right triangle here: https://brainly.com/question/6322314

#SPJ1

Other Questions
David has twenty dimes (d) and quarters (q). These coins total $2.75. How many of each type of coin does he have? Write a systems of equations to model this scenario. Show your work and state how many of each type of coin he has. Enter your systems of equations, your work, and your statement of how many of each type coin David has below. In literature, unreliable narrators are narrators who are not credible or trustworthy. True False The unit you work with is leaving a forward area rearming/refueling point and has unused ammunition. The ammunition should be Which one is not one of the alternatives in building the Web site ? a.completely outhouse b.completely inhouse d.completely outsourced e.mixed responsibility Rachel Carson's book, ________, pointed out the dangers posed to the natural environments and humans by pesticides.A) The Population BombB) NatureC) Silent SpringD) Man and NatureE) Walden The three general types of media schedules are make me a fortune cookie flowchart with photo PLEASE HELP HURRY FAST PLEASE THANK YOU!4. Find the rational roots of x^4+5x^3+7x^2-3x-10=0A. -2,1B. 2,1C. -2,-1D. 2,-15. Find all the zeros of the equation 3x^2-4=-x^4A. 1,2iB. -1,-2iC. 1,-1,2i,-2i,0D. 1,-1,2i,-2i6. What is a polynomial function in standard form with zeros 1,2,-2, and -3?A. x^4+2x^3+7x^2-8x+12B. x^4+2x^3-7x^2-8x+12C. x^4+2x^3-7x^2+8x+12D. x^4+2x^3+7x^2+8x+127. Which correctly describes the roots of the following cubic question.x^3-3x^2+4x-12=0A. three real roots, each with a different valueB. one real root and two complex rootsC. three real roots, two of which are equal in valueD. two real roots and one complex root8. What is the solution of 5^3x=900. Round your answer to the nearest hundredthA. 1.24B. 1.41C. 4.23D. 0.699. x= 1,2,4,6,8,10,11 y= 0,-1,0,4,8,9,8 Table x= 2,5,12,20 y= 30,12,5,3 A. direct variation; y=15xB. inverse variation; y=60/xC. direct variation; y=2x+2D. neither11. A drama club is planning a bus trip to New York City to see a Broadway play. the cost per person for the bus rental varies inversely as the number of people going on the trip. It will cost $30 per person if 44 people go on the trip. How much will it cost per person if 55 people go on the trip. Round your answer to the nearest cent if necessary A. $48.00B. $12.50C. $24.00D. $33.0012. What is the simpler form of the radical expression? 4sqrt2401x^12y^16A. 49|x^9|y^16B. 49x^9|y^16|C. 7|x^3|y^4D. 7x^3|y^4|13. Simplify. 125^1/3 A. 125B. 5C. 25D. sqrt12514. Graph the function. y=sqrtx+315. An initial population of 293 quail increases at an annual rate of 6%. Write an exponential function to model the quail population. What will the approximate population be after 4 years?A. f(x)=(293 x 1.06)^x; 930B. f(x)=293(0.06)^x; 379C. f(x)=293(1.06)^x; 370D. f(x)=293(6)^x; 19016. Evaluate the logarithm log3 2187A. 5B. 6C. 7 D. -717. Estimate the value of the logarithm to the nearest tenthlog4 22A. 2.2B. 0.4C. -0.7D. 3.218. Solve 1n 4 + 1n (3x)=2. Round your answer to the nearest hundredth A. 1.13B. 0.18C. 1.41D. 0.6219. Write an equation for the translation of y= 4/x that has the asymptotes x=7 and y=6.A. y= 4/x-6 +7B. y= 4/x+7 +6C. y= 4/x-7 +6D. y= 4/x+6 +720. What is the graph of the rational function?y=(x-5)(x-3)/(x+4)(x-4)21. What are the points of discontinuity?y=(x-3)/x^2-12x+27A. x=4,x=9,x=1B. x=-9,x=-3C. x=-9,x=-3,x=-1D. x=9,x=322. What is the quotient 6-x/x^2+2x-3/x^2-4x-12/x^2+4x+3 in simplified form? State any restrictions on the variable.23. Simplify the complex fraction x+3/ 1/x+1/x+3A. x^2/2x+3B. x^2/2xC. x^2/x+3D. x^2+2x+3/2x+324. Simplify the differencex^2-x-56/x^2+6x-7 - x^2+2x-15/x^2+9x+20A. x-71/(x-1)(x+4)B. 2x^2-8x-29/(x-1)(x+4)C. -8x-35/(x-1)(x+4)D. -35/(x-1)(x+4)25. Solve the equation 1/x-3+1/x+5=1/3A. x=1,x=7B. x=3,x=-5C. x=-3,x=1D. x=-3,x=7 The market for beignets is competitive. Which of the following firms is making above normal profit in the short run?A. Image with alt text: A line graph titled "FIRM A" with the y axis labeled "Price or Cost" and the x axis labeled "Quantity". A horizontal line, labeled "Market Price", extends from the center of the y axis. A curved line, labeled "MC" starts at the lower left and goes sharply upward, crossing the center of the Market Price line, ending in the center of the graph. A curved line, labeled "AVC", starts above it near the y axis and extends out, crossing the Market Price line at the far left and the far right of the graph. A third curved line, labeled "ATC" starts high on the left and extends out and to the right, curving just above the Market Price line, and ending between the other two lines.B. Image with alt text: A line graph titled "FIRM B" with the y axis labeled "Price or Cost" and the x axis labeled "Quantity". A horizontal line, labeled "Market Price", extends from the center of the y axis. A curved line, labeled "MC" starts at the lower left and goes sharply upward, crossing the center of the Market Price line, ending in the center of the graph. A curved line, labeled "AVC", starts above it and to the left, near the y axis and extends out, crossing the Market Price line at the far right of the graph. A third curved line, labeled "ATC" starts high on the left and extends out and to the right, crossing the Market Price line at the left and again on the right, and ending between the other two lines.C. Image with alt text: A line graph titled "FIRM C" with the y axis labeled "Price or Cost" and the x axis labeled "Quantity". A horizontal line, labeled "Market Price", extends from the center of the y axis. A curved line, labeled "MC" starts at the lower left and goes sharply upward, crossing the center of the Market Price line, ending in the center of the graph. A curved line, labeled "AVC", starts above it near the y axis and extends out, crossing the Market Price line at the far right of the graph. A third curved line, labeled "ATC" starts high on the left and extends out and to the right, curving just above the Market Price line, and ending between the other two lines.D. Image with alt text: A line graph titled "FIRM D" with the y axis labeled "Price or Cost" and the x axis labeled "Quantity". A horizontal line, labeled "Market Price", extends from the center of the y axis. A curved line, labeled "MC" starts at the lower left and goes sharply upward, crossing the center of the Market Price line, ending in the center of the graph. A curved line, labeled "AVC", starts above it and extends out, curving just above the Market Price line and ending at the far right of the graph. A third curved line, labeled "ATC" starts on the left above the AVC line and extends out and to the right, curving above the Market Price line, and ending between the other two lines. the domestic production of soccer balls willfall to 2 soccer balls, and domestic consumption willrise to 4 soccer balls. therefore, wiknam willimport soccer balls in this case. 6. Armenia had a favorable balance of trade in 2018 when it exported $800 million in goods and services and imported $1.5 billion. What is the generic name of Aloxi? Dolasetron Granisetron Ondanestron Palonosetron Question 7 of 10Which of the following is a way group behavior can help a human communitysurvive?O A. Constructing housingOB. Consuming more productsOC. Growing individual gardensOD. Polluting the water supplySUBMIT Curriculum Compacting is a strategy that works best forA) English Language Learners.B) gifted students.C) Cognitively challenged students Use the graph of the rational function to complete the following statement.As , .Question content area bottom leftPart 1As , enter your response here....Question content area rightPart 1-10-8-6-4-2246810-10-8-6-4-2246810xyA coordinate system has a horizontal x-axis labeled from negative 10 to 10 in increments of 1 and a vertical y-axis labeled from negative 10 to 10 in increments of 1. A graph has three branches and asymptotes y= 1, x = negative 3 and x =3. The first branch is above y equals 1 and to the left of x equals negative 3 comma approaching both. The second branch opens downward between the vertical asymptotes comma reaching a maximum at left parenthesis 0 comma 0 right parenthesis . The third branch is above y equals 1 and to the right of x equals 3 comma approaching both.Asymptotes are shown as dashed lines. The horizontal asymptote is y = 1 The vertical asymptotes are x = -3 and x=3 2. 08 Presentaciones- Asignacin Answer the following in complete Spanish sentences. 1. Quines estn en el muelle (deck)? 2. En qu parte del mundo (world) estn los amigos? 3. Quin va a nadar en la piscina? 4. Qu tiempo hace hoy? 5. Por qu no quiere nadar Susana? 6. Qu van a visitar en Mxico? 7. A qu hora se levanta Pablo maana? 8. Qu hace Pablo por la maana? 9. A qu hora van a desayunar los amigos? 10. Qu se pone Pablo por la maana? The drug used in the management of a patient with acute pulmonary edema that will decrease both preload and afterload and provide relief of anxiety isA. morphine.B. amrinone.C. dobutamine.D. aminophylline. a macromolecule that can exist as linear or cyclized, where it has a 1:2:1 ratio of carbon, hydrogen and oxygen 6. Choose a well-known company that you are familiar with, and explain how that company could use each of the five P's of the marketing mix to achieve its brand image and sales goals. (1-8 sentences. 5.0 points)HELP 4. Support Inferences: Every culture has certain rituals and customs for treating the dead. Reread lines36-54. What does Elpenor request Odysseus and his men do? Cite specific textual evidence. Use quotation marks and line numbers.