Answer:
net force would be 50 N right
Explanation:
An object in free fall has a velocity of 5m/s in the upward direction. What is the instantaneous velocity of the object one second later?
Answer:
Explanation:
Near the earth's surface where gravity is approximately 10 m/s² downward
v = u + at
v = 5 + (-10)(1) = -5 m/s
so it has the same speed but in the opposite (downward) direction.
The instantaneous velocity of the object is -4.8 m/s and is directed downwards.
What is meant by instantaneous velocity ?Instantaneous velocity is defined as the rate of change of position for a given interval of time. And it also represents the direction.
Here,
The object is freely falling.
So, the acceleration of the object is the acceleration due to gravity.
a = g = 9.8 m/s²
Initial velocity of the object, u = 5 m/s (upward velocity)
Time given, t = 1
Using the first equation of motion,
v = u + at
v = 5 + (-9.8) x 1
( negative sign is due to it is directed downwards which is opposite to u)
v = -4.8 m/s
That means the instantaneous velocity is directed downwards.
Hence,
The instantaneous velocity of the object is -4.8 m/s and is directed downwards.
To learn more about instantaneous velocity, click:
https://brainly.com/question/2273637
#SPJ3
A particle starts from the origin at t = 0 with a velocity of 6.0 m/s and moves in the xy plane with a constant acceleration of (-2.0 + 4.0) m/s2. At the instant the particle achieves its maximum positive x coordinate, how far is it from the origin
Answer:
9sqrt4
Explanation:
Assuming you mean 6.0i m/s and (-2.0i + 4.0j) m/s^2:
The maximum positive x coordinate is when the time is 3 seconds, because the horizontal velocity will be zero, and therefore will be a turning point, where after that point the x coordinate will only be more negative.
After 3 seconds the x coordinate is 6*3+1/2*-2*3^2=9, and the y coordinate will be 1/2*4*3^2=18.
The distance from the origin is sqrt(9^2+18^2) = 9*sqrt(1+4)
At the instant the particle achieves its maximum positive x coordinate, the displacement is 4.03 m.
Displacement of the particle
The displacement of the particle is calculated as follows;
v² = u² + 2as
where;
a is accelerationa = √(2² + 4²) = 4.47 m/s²
0 = u² + 2as
s = -u²/2a
s = -(6²)/(2 x 4.47)
s = -4.03 m
Thus, at the instant the particle achieves its maximum positive x coordinate, the displacement is 4.03 m.
Learn more about displacement here: https://brainly.com/question/321442
#SPJ6
The amplitude of a lightly damped oscillator decreases by 4.2% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?
Answer:
V= A ω maximum KE of object in SHM
V2 / V1 = .958 ratio of amplitudes since ω is constant
KE2 / KE1 = 1/2 m V2^2 / (1/2 m V1^2) = (V2 / V1)^2
KE2 / KE1 = .958^2 = .918
So KE2 = .918 KE1 and .082 = 8.2% of the energy is lost in one cycle
what forces would a person inside an elevator feel when it is going up?
Which law of motion uses the formula mass = force x acceleration?
Answer:
Newton's second law
Explanation:
A runner of mass 80 kg is moving at 8.0 m/s. Calculate her kinetic energy.
Answer:
2560J
Explanation:
By definition the kinetic energy can be calculated in the following way:
K = (mv²)/2 = 80kg·(8.0m/s)²/2 = 2560 J
If a wave is traveling at a constant speed, and the frequency decreases, what would happen to the wavelength?
A. It would increase.
B. It would decrease.
C. It would remain constant.
D. It would drop to zero.
ur mom walked into a store and got milk
Answer:
is there any questions
Answer:
What is your question???
Explanation:
Two satellites are in orbit around a planet. Satellite 1 has a mass of mm and an orbital radius of 2r2r. Satellite has a mass of 2m2m and an orbital radius of rr. If the magnitude of the gravitational force the planet exerts on Satellite 1 is FF, the magnitude of the gravitational force the planet exerts on Satellite 2 is
a) F
b) 1/2F
c) 2F
d) 1/4F
The magnitude of the gravitational force the planet exerts on Satellite 2 is 1/2F.
We recall that from Newton's law of universal gravitation, the gravitational force is given by;
F =G m1m2/r^2
m1 and m2 are the respective masses
r is the distance of separation.
Let the mass of the planet be M and the mass of the satellite be m. The distance of separation is r.
For satellite 1;
F = GmM/(2r)^2
F = GmM/4r^2
For satellite 2;
F2= G2mM/r^2
Hence, the magnitude of the gravitational force the planet exerts on Satellite 2 is 1/2F.
Learn more about gravitational force: https://brainly.com/question/24783651
A constant force of 12 N in the positive x direction acts on a 4.0-kg object as it moves from the origin to the point 6i-8j m. How much work is done by the given force during this displacement
Answer:
Explanation:
Only force in the direction of motion does work
The force acts in the x direction
The x change of position was 6 m
W = Fd = 12(6) = 72 J
The work done by the given force during this displacement is determined as 120 J.
Work done on the objectThe work done on the object is calculated as follows;
W = Fd
where;
d is the displacement of the objectd = √(6² + 8²)
d = 10 m
W = 12 x 10
W = 120 J
Learn more about work done here: https://brainly.com/question/25573309
#SPJ6
when do we say a curvilinear motion is accelerated?
Answer:
There always is an acceleration in a curvilinear motion, as the velocity vector changes, so always.
Two 5 kg potted cacti, one in a black pot and one in a blue pot, slide down a sagging shelf in the same direction with
the same speed.
Which two equations correctly model the momentum of the two-cactus system?
Answer:
Answers A and D are the correct solution.
Explanation:
Both pots have the same mass and the same velocity vector.
the only difference between A and D is the selection of the reference frame positive direction.
The equation (A) and equation (D) correctly model the momentum of the two-cactus system.
What is momentum?The product of a particle's mass and velocity is called momentum. Being a vector quantity, momentum possesses both magnitude and direction.
According to Isaac Newton's second equation of motion, the force applied on a particle is equal to the time rate of change of momentum.
Given that: mass of each cactus: m = 5 kg.
And they slide down a sagging shelf in the same direction with the same speed.
In equation (A), both velocities of two cacti are in positive direction whereas, in equation (B), both velocities of two cacti is in negative direction. Hence, equation (A) and equation (D) correctly model the momentum of the two-cactus system.
Learn more about momentum here:
https://brainly.com/question/24030570
#SPJ2
Look at the circuit given below. It consists of a cell, a bulb with two terminals X, Y and wires. P, Q, R and S are positions marked. What is the direction of the flow of current? a) PQXYRS b) SRYXQP c) SPQXYR d) PSRYXQ
The conventions for the current allow to find the result for which is the direction of the current the is circuit is:
It leaves the positive pole, goes to the blue cable, to the light bulb, from there to the red cable and reaches the negative pole.
Current is the movement of electrons in a circuit per unit time.
In an electrical circuit the electrons that have a negative charge leave the negative electrode towards the positive electrode, by convention the current goes in the opposite direction from the positive electrode towards the negative electrode.
When analyzing the given circuit, the current leaves the positive pole at the top of the battery and moves through the blue wire, reaches the light bulb and moves the red wire and reaches the negative pole of the battery.
In conclusion using the conventions for the current we can find the result for which is the direction of the current the is circuit is:
It leaves the positive pole, goes to the blue cable, to the light bulb, from there to the red cable and reaches the negative pole.
Learn more about electric current here: brainly.com/question/996480
The spring constant of Spring A is twice as great as the spring constant of Spring B. Both springs are stretched the same amount. How does the
force the Spring A applies compare to the force Spring B applies?
Answer:
FA = 2FB
Force on spring A is twice the Force on spring B
Explanation:
F = kx
FB = (kB)x
FA = (kA)x
FA= (2kB)x
FA = 2(kB)x
FA = 2FB
The force [tex]F_A[/tex] needed to stretch spring A is going to be twice as much as the force [tex]F_B[/tex] needed to stretch spring B.
Explanation:
We know that the spring constants are related as
[tex]k_A = 2k_B[/tex]
The force [tex]F_A[/tex] needed to stretch spring A is given by
[tex]F_A = -k_Ax[/tex]
Also, the force [tex]F_B[/tex] needed to stretch spring is
[tex]F_B = -k_Bx[/tex]
Taking the ratio of the forces, we get
[tex]\dfrac{F_A}{F_B} = \dfrac{-k_Ax}{-k_Bx} = \dfrac{k_A}{k_B}[/tex]
Since [tex]k_A = 2k_B,[/tex] the equation above becomes
[tex]\dfrac{F_A}{F_B} = \dfrac{2k_B}{k_B} = 2[/tex]
or
[tex]F_A = 2F_B[/tex]
This shows that since the spring constant of spring A is twice as large as that of spring B, the force needed is going to be twice as large.
It takes about 4.4 Newtons to lift 1 pound.
How many Newtons would it take to lift 2 pounds?
If it takes 4.4 Newton to lift 1 pound, then to lift 2 pounds the force required will be equal to 8.8 Newton.
What is Force?A force in physics is an input that has the power to change an object's motion. A mass-containing object's velocity can vary, or accelerate, as a result of a force. Intuitively, a push or a pull can also be used to describe forces.
Being such a vector quantity, a force does have magnitude and direction. The SI unit metric newton is used to measure it (N). The letter F stands for force.
According to Newton's second law's original formulation, an object's net force is equal to the speed that its momentum is changing over time.
As per the given data in the question,
It takes 4.4 N to lift 1 pound,
Let the total force required to lift 2 pounds is x.
x = (4.4 × 2)/1
x = 8.8 N
To know more about Force:
https://brainly.com/question/13191643
#SPJ2
Would it be possible to direct the speeds that a coaster will reach before its ever placed on a track?How?
Yes, it is possible to determine the final speed of the rollercoaster if the initial speed and the height to be reached are known.
According the principle of conservation of energy, the total kinetic energy is equal to the total potential energy.
[tex]P.E _i + K.E_i = P.E_f + K.E_f \\\\mgh_i + \frac{1}{2} mv_i^2 = mgh_f + \frac{1}{2} mv_f^2\\\\gh_i + \frac{1}{2} v_i^2 = gh_f + \frac{1}{2} v_f^2\\\\g(0) + \frac{1}{2} v_i^2 = gh_f + \frac{1}{2} v_f^2\\\\\frac{1}{2} v_i^2 = gh_f + \frac{1}{2} v_f^2\\\\v_i^2 = 2gh_f + v_f^2\\\\v_i^2 - 2gh_f = v_f^2\\\\v_f = \sqrt{v_i^2 - 2gh_f}[/tex]
where;
[tex]v_i[/tex] is the initial velocity of the roller coaster[tex]v_f[/tex] is the final velocity of the roller coaster[tex]h_f[/tex] is maximum height reached by the roller coasterThus, it is possible to determine the final speed of the rollercoaster if the initial speed and the height to be reached are known.
Learn more about conservation of energy here: https://brainly.com/question/166559
23 A 2-kg rock is moving at a speed 6 m/s, What constant force is needed to stop the rock in 7x10-52
Answer:
Explanation:
Do you mean 7 x 10⁻⁵² seconds? Who can even measure that small a time period?
If that time is incorrect, just redo the math with the correct time to get the force.
An impulse will cause a change of momentum
FΔt = mΔv
F = mΔv/Δt
F = 2(0 - 6)) / (7 x 10⁻⁵² - 0)
F = - 1.7 x 10⁵² N
The magnitude of that force would pretty much crush any rock it hit.
Convert the decimal number 61078 to binary by using sum-of-weights method
Answer:
1110111010010110
Explanation:
I am not able to upload the working out using the sum of weights method sorry
7. Cellular respiration that uses oxygen is called
Answer:
Cellular respiration that uses oxygen is called Cellular respiration
Explanation:
Without oxygen, it's call fermentation.
Would you die if you take the car keys out of the ignition and throw them in the back seat while you coast down a mountain-side in an attempt to save fuel and look cool for the girl in said back seat.
Answer:
bro what.
Explanation:
... is this an actual physics question?
stuck with this one.
A rocket has a mass of 600 kg. a What is its weight on Earth where g = 10 N/kg? b At lift-off the rocket engine exerts an upward force of 26 000 N. What is the resultant force on the rocket? What is its initial acceleration?
Answer:
a) 5000
b) 40m/s this is the right answers
Explanation:
but no so so sure
A metal bar has a volume of 32 cm3. The mass of the bar is 256 g. What is the density of the metal? A. 290 g/cm3 6 B. 8,200 g/cm C. 8.0 g/cm3 O D. 220 g/cm
The density of the metal is ρ = 8.0g/cm³.
Why is density important?The measure of material how densely it is packed together is called density. As the mass per unit volume, it has that definition. Symbol for density: D or Formula for Density: When is the density, m is the object's mass, and V is its volume, the equation is: = m/V.
Because it enables us to predict which compounds will float and which will sink in a liquid, density is a crucial notion. As long as an object's density is lower than the liquid's density, it will often float.
Equation :To the given equation we have :
mass of the bar = 256g
volume of metal bar = 32cm³
So according to the formula of density
ρ = m/V
So, putting values
ρ = 256g /32cm³
ρ = 8.0g/cm³
To know more about volume :
https://brainly.com/question/28058531
#SPJ1
If a rocket experiences an acceleration generated by the gravity force between the earth and itself, what is this acceleration if the rocket flies 1000 km above the ground and the Earth's radius is 6.378 * 10 ^ 6 * r m. We know the Earth has a mass of 5.97*10^ 24 kg(in m/s^ 2 , G=6.67*10^ -11 N(m/kg)^ 2 ) ?
a 8.97
b 7.32
c 9.81
d 5.5
e 11.45
This question involves the concepts of Gravitational Force and Weight force.
The value of acceleration is "b. 7.32 m/s²".
At the given height the weight of the rocket must be equal to the gravitational force between rocket and the Earth:
[tex]W=F_G\\mg=\frac{GmM}{R^2}\\\\g=\frac{GM}{R^2}[/tex]
where,
g = acceleration = ?
G = universal gravitational constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = mass of earth = 5.97 x 10²⁴ kg
R = Radius of Earth + Height = 6.378 x 10⁶ m + 1 x 10⁶ m = 7.378 x 10⁶ m
Therefore,
[tex]g=\frac{(6.67\ x\ 10^{-11}\ N.m^2/kg^2)(5.97\ x\ 10^{24}\ kg)}{(7.378\ x\ 10^6\ m)^2}[/tex]
g = 7.32 m/s²
Learn more about the gravitational force here:
https://brainly.com/question/24783651?referrer=searchResults
An object falls through the air, gaining speed as it falls. A student claims th
new energy, and so it breaks the law of conservation of energy. Which stat
why the student is incorrect? (1 point)
Energy can be created without breaking the law of conservation
Energy is converted from other forms, not created.
O Equal and opposite amounts of other energy are also created.
O Speed is not related to energy in any way.
Answer:
Energy is converted from other forms, not created
Explanation:
The ball has a decrease in potential energy which allows the kinetic energy, and therefore speed, to increase
How do we become children of Abraham and sons of God?
Answer:
we already are.
Explanation:
God created us, and we are the descendants of Abraham. if you want to choose to live against it, you'll be doing something similar to fighting a current. gods love is unfathomable. he is the only true God, and is our father in heaven.
A person is drinking a glass of soda with ice.
which option describes the relative kinetic energy of molecules in and above the soda in the glass?
A. in : least energy
above : intermediate and greatest energy
B. in : greatest energy
above : least energy
C. in : least energy
above : greatest energy
D. in least and intermediate energy
above : greatest energy
The relative kinetic energy of molecules in the soda is least energy and above the soda in the glass is greatest energy.
The relative kinetic energy of gas molecules increases with increase in the mean distance between the gas molecules.
Also, relative kinetic energy of gas molecules increases with in the temperature of the gas molecules and decreases with a decrease in the temperature of the of the gas molecules;
ΔK.E ∝ T
The ice in the soda lowers the temperature of the gas molecules, thereby reducing their average speed which in turn reduces the average kinetic energy of the gas molecules in the soda.
Above the soda in the glass, the concentration of the gas molecules is less and their mean distance is greatest when compared to inside the soda. This results to an increase in the speed of the gas molecules which increases their average kinetic energy.
Thus, the relative kinetic energy of molecules in the soda is least energy and above the soda in the glass is greatest energy.
Learn more about temperature and kinetic energy here: https://brainly.com/question/305606
An RLC circuit is used in a radio to tune into the radio lagos fm Station broadcasting at 93.5Hz. The resistance is 15ohms and the inductance is 1.6 H. Calculate the capacitance used
The characteristics of the RLC circuit allow to find the result for the capacitance at a resonance of 93.5 Hz is:
Capacitance is C = 1.8 10⁻⁶ F
A series RLC circuit reaches the maximum signal for a specific frequency, called the resonance frequency, this value depends on the impedance of the circuit.
[tex]Z^2 = R^2 + ( wL - \frac{1}{wC} )^2[/tex]
Where Z is the impedance of the circuit, R the resistance, L the inductance, C the capacitance and w the angular velocity. The negative sign is due to the fact that the current in the capacitor and the inductor are out of phase.
In the case of resonance, the impedance term completes the circuit as a resistive system.
[tex]wL - \frac{1}{wC} = 0 \\w^2 = \frac{1}{LC}[/tex]
Indicate that the inductance L = 1.6 H and the frequency f = 93.5 Hz.
Angular velocity and frequency are related.
w = 2π f
Let's substitute.
[tex]C = \frac{1}{L ( 2 \pi f)^2 }[/tex]
Let's calculate.
[tex]C = \frac{1}{1.6 \ ( 2\pi \ 93.5)^2}[/tex]
C = 1.8 10⁻⁶ F
In conclusion with the characteristics of the RLC circuits we can find the result for the capacitance at a 93.5 Hz resonance is:
Capacitance is C = 1.8 10⁻⁶ F
Learn more about serial RLC circuits here: brainly.com/question/15595203
Someone help me please !!!! Will mark Brianliest !!!!!!!!!!!!!!!!
Answer:
Decant it.
Explanation:
Pour the water/sugar solution off the sand. When the sand wants to start coming out as well, Stop and add fresh water to the beaker, stir to rinse the remaining solution into a less concentrated solution and decant again.
Repeat the dilution process until the mix is essentially sand and water, then drive the remaining water from the sand by drying.
Specific heat capacity
of a solid