Find the average rate of change of the function f(x)

f(x) = 10 from [2, 3].
x-4

Answers

Answer 1

Answer:

Step-by-step explanation:

The formula for average rate of change of a function f(x) over an interval [a, b] is given by:

Average rate of change = [f(b) - f(a)] / (b - a)

In this case, we are given the function f(x) = 10 and the interval [2, 3]. So, a = 2 and b = 3. Substituting these values, we get:

Average rate of change = [f(3) - f(2)] / (3 - 2)

= [(10 x 3 - 4) - (10 x 2 - 4)] / (3 - 2)

= (30 - 20) / 1

= 10

Therefore, the average rate of change of the function f(x) = 10 from [2, 3] is 10.


Related Questions

Find the value of x. Round your answer to the nearest tenth.​

Answers

Answer:

19.4

Step-by-step explanation:

cosФ=adjacent ÷hypotenuse

cos72° =6/x

0.309016994=6/x

∴x=6/0.31

   =19.35

   =19.4

please help me with question one it should not be to long as you see the space provided thanks

Answers

Answer:

1. Draw a coordinate plane with a circle on it somewhere

2. B. and C.

Step-by-step explanation:

1. What is a function?

A function is a set of points that has a specific input (x-value) and a specific output (y-value). Let's take the example of y = 2x. Let's start by plugging in 1 for x. 1 will be our input value, and 2• 1 = 2 will be our y-value because the x-value was changed to get to our output, the y-value.

In a function, it is possible to have the same y-value for different x-values; take the example of y = x^2. X can have 2 values, but because it is squared, it will give the same y-value. However, a function that has the same x-values for one y-value is not a function. For example, take a circle, with the equation x^2 + y^2 = 0. This is not a function, because, for 2 y-values, it will equal the same x-value. For your answer, you can draw a coordinate plane with a circle on it. IMPORTANT: 2 x-values cannot equal one y-values in a function.

2. What is a linear function?

A linear function is a function that has an x and y-value, as well as sometimes a coefficient to either variable and a constant. For example, the equation y = 5x +4 is a linear function because there is one y and one x-value, a coefficient (even though it is not necessary), and a constant (even though it is not necessary). It doesn't matter where the coefficients are, but there has to be one y-value and one x-value. Since there can be only one x and y, equations like y = x^2 does not work, because there are 2 x's (in the x^2). Using this information, we can figure out the correct solutions:

A. doesn't work, because there are 3 y-values.

B. works because there is one x and y, and a coefficient (although it isn't necessary)

C. works because like b, it has only one x and y, a coefficient (although it isn't necessary)

D. doesn't work because there is only one y-value and no x-value.

If you liked this answer, please brainliest!

Question
K
31
L
119°
N
45
M
MN =
KN =
m/K=
m/L=
m/M =

Answers

The measure of length MN is 31.

The measure of length KN is 45.

The measure of m∠K is 61⁰.

The measure of m∠L is 119⁰.

What is a parallelogram?

A parallelogram is a four-sided plane figure in which opposite sides are parallel and congruent (having the same length) and opposite angles are congruent (having the same measure). In other words, a parallelogram is a quadrilateral with two pairs of parallel sides.

The properties of a parallelogram include:

Opposite sides are parallel and congruentOpposite angles are congruentConsecutive angles are supplementary (their measures add up to 180 degrees)Diagonals bisect each other (they intersect at their midpoint)

So the length MN = Length KL = 31

Length KN = Length LM = 45

Angle K = angle M = ( 180 - 119) = 61⁰

Angle L = angle N = 119⁰

Learn more about parallelogram here: https://brainly.com/question/3050890

#SPJ1

A chemist has two alloys, one of which is 10% gold and 20% lead in the other which is 40% gold and 30% lead. How many grams of each of the two alloys should be used to make an alloy that contains 57 g of gold and 94 g of lead 

Answers

Answer:

The chemist should use 410 grams of the first alloy (which is 10% gold and 20% lead) and 40 grams of the second alloy (which is 40% gold and 30% lead) to make an alloy that contains 57 grams of gold and 94 grams of lead.

Step-by-step explanation:

Let's call the amount of the first alloy used "x" and the amount of the second alloy used "y". We can set up a system of two equations based on the amount of gold and lead needed in the final alloy:

Equation 1: 0.10x + 0.40y = 57 (the amount of gold in the first alloy is 10%, and in the second alloy is 40%)

Equation 2: 0.20x + 0.30y = 94 (the amount of lead in the first alloy is 20%, and in the second alloy is 30%)

We can then solve for x and y using any method of solving systems of equations. One way is to use substitution:

Solve equation 1 for x: x = (57 - 0.40y)/0.10 = 570 - 4ySubstitute this expression for x in equation 2: 0.20(570 - 4y) + 0.30y = 94Simplify and solve for y: 114 - 0.8y + 0.3y = 94 → -0.5y = -20 → y = 40Substitute this value of y into the expression for x: x = 570 - 4y = 410

Therefore, the chemist should use 410 grams of the first alloy (which is 10% gold and 20% lead) and 40 grams of the second alloy (which is 40% gold and 30% lead) to make an alloy that contains 57 grams of gold and 94 grams of lead.

solve (x-3)^2(2x+5)(x-1)>= 0

Answers

To solve this inequality, we need to determine the values of x that satisfy the inequality.

First, we can find the critical values of x by setting each factor equal to zero and solving for x:

(x-3)^2 = 0 => x = 3 (double root)
2x+5 = 0 => x = -5/2
x-1 = 0 => x = 1

These critical values divide the number line into four intervals: (-infinity, -5/2), (-5/2, 1), (1, 3), and (3, infinity).

We can now test each interval to see if it satisfies the inequality. We can use a sign chart or test points within each interval to do this.

For example, in the interval (-infinity, -5/2), we can choose a test point such as x=-3 and evaluate the expression:

(x-3)^2(2x+5)(x-1) = (-6)^2(-1)(-4) = 144

Since this expression is positive, we know that this interval does not satisfy the inequality.

Using similar reasoning, we can test the other intervals and find that the solutions to the inequality are:

x <= -5/2 or 1 <= x <= 3

Therefore, the solution to the inequality is:

x ∈ (-infinity, -5/2] U [1, 3]

Answer:

x= infinite or -5/2 or 1, + infinite

Step-by-step explanation:

Xochitl spots an airplane on radar that is currently approaching in a straight line, and that will fly directly overhead. The plane maintains a constant altitude of 7425 feet. Xochitl initially measures an angle of elevation of 19° to the plane at point A. At some later time, she measures an angle of elevation of 37° to the plane at point B.

Find the distance the plane traveled from point A to point B. Round your answer to the nearest foot if necessary.

Answers

Answer:

d1 - d2 ≈ 9917.4 feet ≈ 3021 meters

Step-by-step explanation:

tan(19°) = 7425/d1

tan(37°) = 7425/d2

Solving for d1 and d2, we get:

d1 = 7425/tan(19°) ≈ 22977.6 feet

d2 = 7425/tan(37°) ≈ 13060.2 feet

Therefore, the distance the plane traveled from point A to point B is:

d1 - d2 ≈ 9917.4 feet ≈ 3021 meters

if 2^x=x^2 , find x.​

Answers

Answer:

x = 2 or x = 4

Step-by-step explanation:

The equation:

[tex]2^{x} = x^{2}[/tex]

Has two solutions:

x = 2 or x = 4.

The values of x can be found by graphing the two functions ([tex]y = 2^{x}[/tex] and [tex]y = x^{2}[/tex]) and finding their points of intersection, or you can use numerical methods to solve the equation.

To check our work, we can simply insert 2 and 4 in as y.

For 2:

[tex]2^{2} = 2^{2}[/tex]

You can see that it is the same.

For 4:

[tex]2^{4} = 4^{2}[/tex](2 × 2 × 2 × 2) = (4 × 4)16 = 16

They are also the same.

Therefore, x can equal either 2 or 4.

Find the equation of the line that passes through the given point and has the given slope. (Use x as your variable.) (-9,- 9 ) , m = 0

Answers

The linear equation that passes through (-9, -9) and has the slope m = 0 is:

y = -9

How to find the equation of the line?

A general linear equation can be written in slope-intercept form as.

y = m*x + b

Where m is the slope and b is the y-intercept.

Here we want to find the equation of a line that passes through (-9, -9) and that has the slope m = 0.

Repplacing the slope we will get:

y = 0*x + b

And no we want it to pass throug (-9, -9), replacing these values we will get:

-9 = 0*-9 + b

-9 = b

Then the linear equation is:

y = -9

Learn more about linear equations at:

https://brainly.com/question/1884491

#SPJ1

If x = 37 degrees, how many degrees is Angle y? (Include only numerals in your response.)

Answers

Answer:

143 degrees

Step-by-step explanation:

angles on a straight line add up to 180 degrees

[tex]x + y = 180 \\ 37 + y = 180 \\ y = 180 - 37 \\ y = 143 \: degrees[/tex]

Prove the first associative law from Table 1 by show-
ing that if A, B, and C are sets, then A ∪ (B ∪ C) =

(A ∪ B) ∪ C.

Answers

Answer:

Step-by-step explanation:

o prove the first associative law of set theory, we need to show that for any sets A, B, and C:

A ∪ (B ∪ C) = (A ∪ B) ∪ C

To do this, we need to show that any element that is in the left-hand side of the equation is also in the right-hand side, and vice versa.

First, let's consider an arbitrary element x.

If x ∈ A ∪ (B ∪ C), then x must be in A, or in B, or in C (or in two or more of these sets).

If x ∈ A, then x ∈ A ∪ B, and so x ∈ (A ∪ B) ∪ C.

If x ∈ B, then x ∈ B ∪ C, and so x ∈ A ∪ (B ∪ C), which means that x ∈ (A ∪ B) ∪ C.

If x ∈ C, then x ∈ B ∪ C, and so x ∈ A ∪ (B ∪ C), which means that x ∈ (A ∪ B) ∪ C.

Therefore, we have shown that if x ∈ A ∪ (B ∪ C), then x ∈ (A ∪ B) ∪ C.

Next, let's consider an arbitrary element y.

If y ∈ (A ∪ B) ∪ C, then y must be in A, or in B, or in C (or in two or more of these sets).

If y ∈ A, then y ∈ A ∪ (B ∪ C), and so y ∈ (A ∪ B) ∪ C.

If y ∈ B, then y ∈ A ∪ B, and so y ∈ A ∪ (B ∪ C), which means that y ∈ (A ∪ B) ∪ C.

If y ∈ C, then y ∈ (A ∪ B) ∪ C.

Therefore, we have shown that if y ∈ (A ∪ B) ∪ C, then y ∈ A ∪ (B ∪ C).

Since we have shown that any element that is in the left-hand side of the equation is also in the right-hand side, and vice versa, we can conclude that:

A ∪ (B ∪ C) = (A ∪ B) ∪ C

This proves the first associative law of set theory.

What is the slope between the points (3,1) and (-2, 1)? show your solution.

Answers

Answer:

The slope of a line passing through two points (x1, y1) and (x2, y2) is given by the formula:

slope = (y2 - y1) / (x2 - x1)

n this case, we have the points (3, 1) and (-2, 1), so we can plug in the values:

slope = (1 - 1) / (-2 - 3)

slope = 0 / -5

slope = 0

Therefore, the slope between the points (3, 1) and (-2, 1) is 0. This means that the line passing through these points is a horizontal line, since the y-coordinate of both points is the same and the slope is 0 (i.e., there is no change in the y-coordinate as we move along the line).

multiply. round your answer to the nearest hundredeth: 2.56x0.03=

Answers

0.08 rounded for the nearest hundredth

Question 9
The volume of a cube can be found using the equation V = s³, where V is the volume and s is the measure of one side of the cube.

Match the equation for how to solve for the side length of a cube to its description.



Drag the equation into the box to match the description.

Answers

The equation for solving the side length of a cube is s = ∛V, where s is the side length of the cube, and V is the volume.

The equation for solving the side length of a cube can be expressed as s = ∛V, where s is the side length of the cube, and V is the volume. This equation can be used to calculate the side length of a cube when the volume is known. For example, if the volume of a cube is 125 cubic units, the side length can be calculated by substituting 125 for V and solving the equation: s = ∛125 = 5. This means that the side length of the cube is 5 units.

Learn more about equation here:

https://brainly.com/question/10413253

#SPJ1

please help me out with this question! i appreciate it :))

Answers

Answer:

144,000

Step-by-step explanation:

you multiply 18,000 by 8 since its after one year and you get 144,000.

The answer is 144,000

(Stock Level). A.S. Ltd. produces a product 'RED' using two components X and Y. Each unit of 'RED' requires 0.4 kg. of X and 0.6 kg. of Y. Weekly production varies from 350 units to 450 units averaging 400 units. Delivery period for both the components is 1 to 3 weeks. The economic is 600 kgs. and for Y is 1,000 kgs. Calculate: (1) Re-order level of X; (ii) Maximum level of X; (iii) Maximum level of Y.

Answers

Answer:

Step-by-step explanation:

To calculate the reorder level of component X, we need to find out the average weekly consumption of X.

Average consumption of X per unit of 'RED' = 0.4 kg

Average weekly production of 'RED' = 400 units

Average weekly consumption of X for producing 400 units of 'RED' = 0.4 kg/unit x 400 units/week = 160 kg/week

Assuming lead time of 3 weeks for delivery of X, the reorder level of X would be:

Reorder level of X = Average weekly consumption of X x Lead time for delivery of X

Reorder level of X = 160 kg/week x 3 weeks = 480 kg

To calculate the maximum level of X, we need to take into account the economic order quantity and the maximum storage capacity.

Economic order quantity of X = Square root of [(2 x Annual consumption of X x Ordering cost per order) / Cost per unit of X]

Assuming 52 weeks in a year:

Annual consumption of X = Average weekly consumption of X x 52 weeks/year = 160 kg/week x 52 weeks/year = 8,320 kg/year

Ordering cost per order of X = 600

Cost per unit of X = 1

Economic order quantity of X = Square root of [(2 x 8,320 kg x 600) / 1] = 2,771.28 kg (approx.)

Maximum storage capacity of X = Economic order quantity of X + Safety stock - Average weekly consumption x Maximum lead time

Assuming a safety stock of 20% of the economic order quantity and a maximum lead time of 3 weeks:

Maximum storage capacity of X = 2,771.28 kg + (0.2 x 2,771.28 kg) - (160 kg/week x 3 weeks) = 2,815.82 kg (approx.)

To calculate the maximum level of Y, we follow the same approach as for X:

Annual consumption of Y = Average weekly consumption of Y x 52 weeks/year

Average consumption of Y per unit of 'RED' = 0.6 kg

Average weekly consumption of Y for producing 400 units of 'RED' = 0.6 kg/unit x 400 units/week = 240 kg/week

Annual consumption of Y = 240 kg/week x 52 weeks/year = 12,480 kg/year

Economic order quantity of Y = Square root of [(2 x Annual consumption of Y x Ordering cost per order) / Cost per unit of Y]

Ordering cost per order of Y = 1,000

Cost per unit of Y = 1.5

Economic order quantity of Y = Square root of [(2 x 12,480 kg x 1,000) / 1.5] = 915.65 kg (approx.)

Maximum storage capacity of Y = Economic order quantity of Y + Safety stock - Average weekly consumption x Maximum lead time

Assuming a safety stock of 20% of the economic order quantity and a maximum lead time of 3 weeks:

Maximum storage capacity of Y = 915.65 kg + (0.2 x 915.65 kg) - (240 kg/week x 3 weeks) = 732.52 kg (approx.)

if 24 x 18 and x 1 are in proportion find the value of x​

Answers

Answer:

x = 432.

Step-by-step explanation:

We know that 24 x 18 and x x 1 are in proportion, which can be written as:

(24 x 18) / (x x 1) = k, where k is a constant of proportionality.

Simplifying the left-hand side, we get:

24 x 18 = 432

x x 1 = x

Substituting these values, we get:

432 / x = k

To solve for x, we need to find the value of k. We can do this by using the fact that the two ratios are in proportion. That is:

24 x 18 : x x 1 = 432 : k

Simplifying the left-hand side, we get:

(24 x 18) / x = 432 / k

Multiplying both sides by x and k, we get:

24 x 18 k = 432 x

Dividing both sides by 24 x, we get:

18 k / 1 = 18

Solving for k, we get:

k = 1

Substituting k = 1 into the equation 432 / x = k, we get:

432 / x = 1

Multiplying both sides by x, we get:

432 = x

Therefore, x = 432.

This shows a function. F(x)=4x^3+8 which statement describes f(X)? A. The function does not have an inverse function because F(x) fails the vertical line test. B. The function does not have an inverse function because f(x) fails the horizontal line test. C. The function has an inverse function because f(x) passes the vertical line test. D. The function has an inverse function because f(x) passes the horizontal line test

Answers

Answer:

Step-by-step explanation:

The statement that describes the function f(x) = 4x^3 + 8 is:

A. The function does not have an inverse function because f(x) fails the vertical line test.

To see why this is the correct answer, let's first define what the vertical line test and the horizontal line test are.

Vertical line test: A function passes the vertical line test if any vertical line intersects the graph of the function at most once. This means that no two points on the graph have the same x-coordinate.

Horizontal line test: A function passes the horizontal line test if any horizontal line intersects the graph of the function at most once. This means that no two points on the graph have the same y-coordinate.

Now, let's look at the function f(x) = 4x^3 + 8. We can graph this function by plotting points or by using a graphing calculator. The graph of the function looks like a curve that goes up and to the right.

If we draw a vertical line anywhere on the graph, we can see that it intersects the graph at most once, which means that f(x) passes the vertical line test. However, if we draw a horizontal line on the graph, we can see that it intersects the graph at more than one point. This means that f(x) fails the horizontal line test.

The fact that f(x) fails the horizontal line test tells us that there are some values of y that correspond to more than one value of x. This means that f(x) is not a one-to-one function, and therefore it does not have an inverse function.

Therefore, the correct statement that describes the function f(x) is:

A. The function does not have an inverse function because f(x) fails the vertical line test.

URGENT ! 100 POINTS

It's the age of Vikings! You are an archer on a boat approaching the London bridge in England with troops ready to ambush and secure London, England. Your leader yells
to ready your aim to fire as the boat rushes at full speed towards your enemies ahead!

Steadily, you line up the shot and the arrow is launched from your bow into the air with an upward velocity of 60ft/sec. The equation that gives the height (h) of the arrow at any time (t), in seconds, is modeled by:
h(t) = − 16t²+60t + 9.5

How long will it take the arrow to reach the enemy on the bridge and nail him with a
perfect headshot?

(The enemies head is about 45 feet from ground level as he is located on top of the London bridge)

Answers

To find out how long it will take for the arrow to hit the enemy on the bridge, we need to find the time when the height of the arrow is 45 feet (the height of the enemy's head above the ground).

So, we can set h(t) equal to 45 and solve for t:

h(t) = − 16t²+60t + 9.5

45 = −16t² + 60t + 9.5

Rearranging the equation, we get:

16t² - 60t - 35.5 = 0

To solve for t, we can use the quadratic formula:

t = (-b ± sqrt(b² - 4ac)) / 2a

where a = 16, b = -60, and c = -35.5

Plugging in the values, we get:

t = (-(-60) ± sqrt((-60)² - 4(16)(-35.5))) / 2(16)

Simplifying the expression inside the square root, we get:

t = (60 ± sqrt(3600 + 2272)) / 32

t = (60 ± sqrt(5872)) / 32

t ≈ 0.81 or t ≈ 3.69

Since we're looking for the time when the arrow hits the enemy, we need to choose the positive solution: t ≈ 3.69 seconds.

Therefore, it will take approximately 3.69 seconds for the arrow to hit the enemy on the bridge with a perfect headshot.

In ΔLMN, l = 150 inches, n = 890 inches and ∠N=61°. Find all possible values of ∠L, to the nearest 10th of a degree.

Answers

The possible values of ∠L are 118.9 degrees (rounded to 10th of a degree).

What is a triangle?

A polygon with three sides and three angles is a triangle. It is one of the simplest geometric shapes.

To find the measure of angle L in ΔLMN, we can use the fact that the sum of the angles in a triangle is 180 degrees:

∠L + ∠M + ∠N = 180

We know that ∠N = 61 degrees, so we can substitute that value in and simplify:

∠L + ∠M + 61 = 180

∠L + ∠M = 119

We also know that the length of LM is 150 inches and the length of LN is 890 inches. We can use the Law of Cosines to find the measure of angle M:

cos M = (150² + 890² - LM²) / (2 × 150 × 890)

cos M = 0.999989 (rounded to 6 decimal places)

M = cos⁻¹(0.999989)

M ≈ 0.00114 radians

M ≈ 0.0655 degrees (rounded to 10th of a degree)

Now we can substitute the value of M into the equation we derived earlier and solve for angle L:

∠L + 0.0655 + 61 = 180

∠L = 118.9345

To know more about Law of Cosines visit:

https://brainly.com/question/30766161

#SPJ1

A his herd of cows among his 4 sons he gave one son half the herd a second son one fourth of the herd a third son one fith of the herd and the fourth son 48 cows how many cows were in the herd originally

Answers

Answer:

Let the total number of cows in the herd be represented by "x". Then, according to the problem:

The first son received half the herd, or (1/2)x cows.

The second son received one fourth of the herd, or (1/4)x cows.

The third son received one fifth of the herd, or (1/5)x cows.

The fourth son received 48 cows.

We can write an equation to represent the total number of cows in the herd:

(1/2)x + (1/4)x + (1/5)x + 48 = x

To solve for "x", we can start by simplifying the fractions:

5/10x + 2/10x + 2/10x + 48 = x

Combining like terms, we get:

9/10x + 48 = x

Subtracting 9/10x from both sides, we get:

48 = 1/10x

Multiplying both sides by 10, we get:

x = 480

Therefore, the original herd had 480 cows.

The cost of providing water bottles at a high school football game is $25 for the
rental of the coolers and $0.65 per bottle of water. The school plans to sell water for $1.25 per bottle.
A. Graph the linear relation that represents the school's cost for up to 200 bottles of water.
B. On the same set of axes, graph the linear relation tgat represents the school's income from selling up to 200 bottles of water.
C. Write the equation representing each other.
D. What are the coordinates ofvthe point where the line cross?
E. What is the significance of this point?

Answers

Answer:

A. To graph the linear relation representing the school's cost for up to 200 bottles of water, we can use the slope-intercept form of a linear equation: y = mx + b, where y is the cost, x is the number of bottles of water, m is the slope, and b is the y-intercept.

The y-intercept is the fixed cost of renting the coolers, which is $25. The slope represents the additional cost per bottle of water, which is $0.65. Therefore, the equation is:

y = 0.65x + 25

To graph the line, we can plot the y-intercept at (0, 25), and then use the slope to find additional points. For example, when x = 50, y = 0.65(50) + 25 = 57.50, so we can plot the point (50, 57.50) and draw a line through the points.

B. To graph the linear relation representing the school's income from selling up to 200 bottles of water, we can also use the slope-intercept form of a linear equation: y = mx + b, where y is the income, x is the number of bottles of water, m is the slope, and b is the y-intercept.

The y-intercept is the revenue from selling 0 bottles of water, which is $0. The slope represents the revenue per bottle of water, which is $1.25. Therefore, the equation is:

y = 1.25x + 0

To graph the line, we can plot the y-intercept at (0, 0), and then use the slope to find additional points. For example, when x = 50, y = 1.25(50) + 0 = 62.50, so we can plot the point (50, 62.50) and draw a line through the points.

C. The equation for the school's cost is y = 0.65x + 25, and the equation for the school's income is y = 1.25x + 0.

D. To find the coordinates of the point where the lines cross, we can set the two equations equal to each other and solve for x:

0.65x + 25 = 1.25x + 0

0.6x = 25

x = 41.67

Then we can plug in x = 41.67 into either equation to find y:

y = 0.65(41.67) + 25 = 52.08

Therefore, the point where the lines cross is (41.67, 52.08).

E. The significance of this point is that it represents the breakeven point, where the school's cost equals its revenue. If the school sells fewer than 41.67 bottles of water, it will not cover its costs. If it sells more than 41.67 bottles of water, it will make a profit.

Step-by-step explanation:

10 1/3 is how much more than 7 8/9?

Answers

Answer:2 4/9

Step-by-step explanation:

Weight on Earth (pounds) a. If a person weighs 12 pounds on the Moon, how much does the person weigh on Earth? Explain your answer. b. If a person weighs 126 pounds on Earth, how much does the person weight on the Moon? Explain your answer.​

Answers

Answer: I gave you two answers if you can try them both :)

Step-by-step explanation:

If his weight on Earth is 126lb and only 21lb on moon, you can divide  to see what is the ratio of those weights.

It means that your weight on moon will be 6 times less than on Earth.

Now we have to multiply 31lb which is weight of the person on moon by 6 to get his weight on Earth

On moon our mass becomes 1/6 of actual mass so if you weigh 60 kg then your mass on moon will be 10 kg..

Similarly if your mass on moon is 31 lbs then your mass on earth will be 31*6=186 lbs.

The​ gas/oil ratio for a certain chainsaw is 50 to 1 .

a. How much oil​ (in gallons) should be mixed with 12 gallons of​ gasoline?

b. If 1 gallon equals 128 fluid​ ounces, write the answer to part a in fluid ounces.

Answers

0.24 gallons of oil should be mixed with 12 gallons of gasoline.

Therefore, 30.72 fluid ounces of oil should be mixed with 12 gallons of gasoline.

Step-by-step explanation:

a. To calculate the amount of oil needed, we need to know the ratio of gas to oil in terms of units. Since 50 parts of gas are mixed with 1 part of oil, we have:

1 gallon of gas / 50 = x gallons of oil

To find x, we substitute the given value of gas (12 gallons) and solve for x:

1 gallon of gas / 50 = x gallons of oil

12 gallons of gas / 50 = x

0.24 gallons of oil = x

Therefore, 0.24 gallons of oil should be mixed with 12 gallons of gasoline.

b. To convert gallons to fluid ounces, we multiply by 128:

0.24 gallons of oil * 128 fluid ounces/gallon = 30.72 fluid ounces of oil

Therefore, 30.72 fluid ounces of oil should be mixed with 12 gallons of gasoline.

I will mark you brainiest!

Given the diagram above, m∠Z is:

A) 180°
B) 120°
C) 60°
D) 30°

Answers

Answer:

B. 120o

Step-by-step explanation:

A parallelogram is a flat 2d shape which has four angles. The opposite interior angles are equal. The angles on the same side of the transversal are supplementary, that means they add up to 180 degrees. Hence, the sum of the interior angles of a parallelogram is 360 degrees.

t + 2t = 180

3t = 180

t = 180/3 = 60

m∠Z  = 2t = 2(60) = 120

find thenonpermissible replacment for x in this expression 1/-8x

Answers

If any number is divided by zero. the result is indeterminate.

Therefore, zero is the non-permissible replacement for x.

The weights of ice cream cartons are normally distributed with a mean weight of 7 ounces and a standard deviation of 0.6 ounces. A sample of 25 cartons is randomly selected. What is the probability that their mean weight is greater than 7.19 ​ounces?

Answers

The probability that the mean weight of the sample of 25 cartons is greater than 7.19 ounces is given as follows:

0.0571 = 5.71%.

How to obtain probabilities using the normal distribution?

The z-score of a measure X of a variable that has mean symbolized by [tex]\mu[/tex] and standard deviation symbolized by [tex]\sigma[/tex] is obtained by the rule presented as follows:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The z-score represents how many standard deviations the measure X is above or below the mean of the distribution, depending if the obtained z-score is positive or negative.Using the z-score table, the p-value associated with the calculated z-score is found, and it represents the percentile of the measure X in the distribution.By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

The parameters for this problem are given as follows:

[tex]\mu = 7, \sigma = 0.6, n = 25, s = \frac{0.6}{\sqrt{25}} = 0.12[/tex]

The probability that the mean weight is greater than 7.19 ounces is one subtracted by the p-value of Z when X = 7.19, considering the standard error s, hence:

Z = (7.19 - 7)/0.12

Z = 1.58

Z = 1.58 has a p-value of 0.9429.

Hence:

1 - 0.9429 = 0.0571 = 5.71%.

More can be learned about the normal distribution at https://brainly.com/question/25800303

#SPJ1

Calculate the volume of sand needed to fill the long jump pit to a depth of 0,07m​

Answers

Answer:

Step-by-step explanation:

To calculate the volume of sand needed to fill the long jump pit to a depth of 0.07 meters, we need to know the length and width of the pit.

Assuming that the long jump pit is a rectangular prism, we can use the formula:

Volume = length x width x depth

Let's say the length of the pit is 8 meters and the width is 3 meters. Then the volume of sand needed to fill the pit to a depth of 0.07 meters would be:

Volume = 8m x 3m x 0.07m

Volume = 1.68 cubic meters

Therefore, we would need 1.68 cubic meters of sand to fill the long jump pit to a depth of 0.07 meters.

PLS HELP , in need to solve by using substitution and with checks

Answers

Answer:

(0, 2)

Step-by-step explanation:

[tex]\tt y=x+2\\3x+3y=6[/tex]

Substitute y= y=x+2 into 3x+3y=6

[tex]\tt 3x+3(x+2)=6[/tex][tex]\tt 6x+6=6[/tex]

Solve for x :-

[tex]\tt 6x+6=6[/tex]

Cancel 6 from both sides:-

[tex]\tt 6x=0[/tex]

Divide both sides by 6:-

[tex]\tt \cfrac{6x}{6} =\cfrac{0}{6}[/tex][tex]\boxed{\bf x=0}[/tex]

Now, Let's solve for y:-

Substitute x = 0 into y=x+2

[tex]\tt y=0+2[/tex][tex]\boxed{\bf y=2}[/tex]

Therefore, x = 0 and y = 2.

_________________

Check:-

To check a system of equations by substitution, we plug the values for x and y into the equations, If both simplified are true then your answer is correct.

Equation 1 :-

y = x + 2

(2) = 0 + (2)2=2

Equation 2 :-

3x+3y=6

3(0)+3(2)=60+6=66=6

__________________________

Hope this helps!

what is the value of the expression (-5)-³​

Answers

Answer:

[tex]\frac{1}{-125}[/tex]

x = -125

Step-by-step explanation:

It shows the steps in the pic you attached so I didn't add those steps.

(-5)(-5)(-5) = -125

Other Questions
Find the slope of the line that passes through the pair of points (7/20,5/19)and 5/9,11/16) Suppose that a factory produces light bulbs, and the percentage of defective bulbs is 3.5% . If a sample of 550 light bulbs is selected at random what is the probability that the number of defective bulbs in the sample is greater than 15 A bag contains marbles 3 red, 4 green, and 5 white. If a marble is pulled from the bag what is the probability it will be green A ball is thrown directly with an initial speed of 7.30 m/s from a height of 2.91. After what time intervals does it strike the ground? Do you think the author had a comfortable night sleeping Mongolian outlaw style or do you think that the method failed give reason Greg set a goal of raising enough money to buy a new bicycle that cost $210 he has already re-$60 and he will earn $15 for each long that he mows this summer which number line represents the number of lawns can mow and meet his goal? Match each image with the type of photography/camera Miller is going to install baseboard around the perimeter of her room's rectangular floor, shown below. The floor has dimensions 15 feet by 20 feet. The 2 doorways in her room are each 3 feet wide and do not require baseboard. Assuming an average cost of $0.30 per linear foot requiring baseboard, how much will it cost Naomi to purchase baseboard for her room? Use the CER strategy to explain your answer. Use the vertex to find the general form equation on the quadratic function What is electric shock? I have about 10 minutes pls help Describe one specific change you would suggest for the Wells Fargo pay plan in one paragraph. E.x. add a different performance outcome or get more specific on how one of their new performance outcomes could be enacted or consider how to improve internal whistleblowing. Remember that contingent rewards often have unintended consequences, so explain how your change will help assure the performance outcome actually desired in another paragraph. Explain how the similarity in facts between Wisconsin v. Yoder (1972) and Church of LukumiBabalu Aye v. Hialeah (1993) led to similar holdings in both cases. What substance is represented by the arrows support your answer Why did Davy Crockett most likely join the Alamo defenders PLEASE HELP PLEASE ASAP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Read the paragraph and then select the correct answer below.Within the branches of a eucalyptus tree in Australia lives one of God's special creations, the cuddly koala. He is often called a koala "bear," but he is not a bear. He is a marsupial or a "pouched" animal. The koala is native only to Australia. He has large bushy ears, a black nose, and no tail. He would make a nice pet, but he rarely survives in captivity. Once hunted for his fur, the koala now enjoys government protection."He has large, bushy ears, a black nose, and no tail."This sentence is an example of a(n) _____.support sentencetopic sentencesummary sentencetransitional deviceintroductory sentencequotation AWNSER ASAPP PLEASEE WILL MARK BRAINLIST THE CORRECT AWNSER!!!!! PLEASE I HAVE 3 MIN LEFT INTILL I NEED TO TURN IT IN PLEASE!!!!!! What is the value x + y? (Round your answer to the nearest tenth) Which whole number is equivalent to 8 and 2A:2 B:4 C:6 D:8 If an individual comes in with pain, what is the recommended procedure?prescribing pain relievers and recommending restusing their hands and forearms to manipulate muscles and connective tissuesuggesting dietary changesusing aromatherapy and soothing music to relax their clients answers for these please