The input x = 6 is mapped to different values, thus, the relation is not a function.
Is the relationship a function?A relationship is a function only if all the inputs are mapped to a single output (this means that each value of the domain is mapped into only one of the values of the range)
Now, the given relation is the following one:
(6, 3), (5, 6), (-1, 1), (6, 9), (8,8)
If you look at the first and the fourth coordinate pairs, you can see that in both cases the inputs are 6.
And the outputs are different, then that input is being mapped to two different values, thus, the relation is not a function.
Learn more about functions at:
https://brainly.com/question/2328150
#SPJ1
The variance and standard deviation can never be
zero
negative
smaller than the mean
larger than the mean
The variance and standard deviation can never be negative. However, they can be zero if there is no variability in the data. It is possible for the variance and standard deviation to be smaller or larger than the mean depending on the spread of the data.
The variance and standard deviation can never be negative.
1. Variance is a measure of how spread out the data points are from the mean. It is calculated by finding the average of the squared differences from the mean. Since squares are always positive or zero, the variance cannot be negative.
2. Standard deviation is the square root of the variance. Since the square root of a negative number is not a real number, the standard deviation cannot be negative either.
It is worth noting that both variance and standard deviation can be zero if all data points are the same, and they can be smaller or larger than the mean, depending on the data distribution.
Learn more about Variance:
brainly.com/question/13708253
#SPJ11
What is the difference in cubic inches between the volume of the large prism and volume of the smaller prism?
The difference between the large prism and the small prism is 276 inches cube.
How to find the volume of a prism?The prisms above are rectangular base prisms. Therefore, the difference between the volume of the large prism and volume of the smaller prism can be calculated as follows:
Volume of the larger prisms = lwh
where
l = lengthw = widthh = heightTherefore,
Volume of the larger prisms = 6 × 4 × 15
Volume of the larger prisms = 360 inches³
volume of the smaller prism = 7 × 4 × 3
Volume of the larger prisms = 28 × 3
Volume of the larger prisms = 84 inches³
Therefore,
difference of the volume = 360 - 84
difference of the volume = 276 inches³
learn more on volume here: brainly.com/question/22907480
#SPJ1
You are studying a population of 1,800 wrestlers whose mean weight is 225 lbs with standard deviation of 20 lbs a) What proportion/percentage weight less than 220 lbs? b) What is the probability that a random wrestler weighs more than 250 lbs? c) How many wrestlers weigh between 210 and 230 lbs?
Approximately 670 wrestlers weigh between 210 and 230 lbs.
a) To find the proportion/percentage of wrestlers that weigh less than 220 lbs, we need to standardize the weight value using the formula:
z = (x - μ) / σ
where x is the weight value, μ is the mean weight, and σ is the standard deviation.
So, for x = 220 lbs:
z = (220 - 225) / 20 = -0.25
Looking up the standard normal table or using a calculator, we find that the area/proportion to the left of z = -0.25 is 0.4013. Therefore, the proportion/percentage of wrestlers that weigh less than 220 lbs is:
0.4013 or 40.13%
b) To find the probability that a random wrestler weighs more than 250 lbs, we again need to standardize the weight value:
z = (250 - 225) / 20 = 1.25
Using the standard normal table or a calculator, we find that the area/proportion to the right of z = 1.25 is 0.1056. Therefore, the probability that a random wrestler weighs more than 250 lbs is:
0.1056 or 10.56%
c) To find the number of wrestlers that weigh between 210 and 230 lbs, we first need to standardize these weight values:
z1 = (210 - 225) / 20 = -0.75
z2 = (230 - 225) / 20 = 0.25
Next, we need to find the area/proportion between these two standardized values:
P(-0.75 < z < 0.25) = P(z < 0.25) - P(z < -0.75)
Using the standard normal table or a calculator, we find that P(z < 0.25) is 0.5987 and P(z < -0.75) is 0.2266. Therefore:
P(-0.75 < z < 0.25) = 0.5987 - 0.2266 = 0.3721
Finally, we can find the number of wrestlers by multiplying this proportion by the total population size:
0.3721 * 1800 = 669.78 or approximately 670 wrestlers
Therefore, approximately 670 wrestlers weigh between 210 and 230 lbs.
To learn more about probability visit:
https://brainly.com/question/15124899
#SPJ11
I WILL GIVE BRAINLILEST TO WHOEVER GETS IT RIGHT
A 35-year-old person who wants to retire at age 65 starts a yearly retirement contribution in the amount of $5,000. The retirement account is forecasted to average a 6.5% annual rate of return, yielding a total balance of $431,874.32 at retirement age.
If this person had started with the same yearly contribution at age 40, what would be the difference in the account balances?
A spreadsheet was used to calculate the correct answer. Your answer may vary slightly depending on the technology used.
$378,325.90
$359,978.25
$173,435.93
$137,435.93
Answer:
B
Step-by-step explanation:
Using the same yearly contribution of $5,000 and an average annual rate of return of 6.5%, starting at age 40 instead of 35, the total balance at retirement age of 65 would be $359,978.25.
To calculate this, we can use the future value formula:
FV = PV x (1 + r)^n
where FV is the future value, PV is the present value (initial contribution), r is the interest rate per period, and n is the number of periods.
If we start at age 40 and contribute $5,000 per year for 25 years (until age 65), the present value would be $0 (since we haven't made any contributions yet) and the number of periods would be 25. The interest rate per period would be 6.5% / 1 = 0.065.
Using these values in the future value formula, we get:
FV = $5,000 x ((1 + 0.065)^25 - 1) / 0.065 = $359,978.25
Therefore, the difference in the account balances between starting at age 35 and starting at age 40 would be:
$431,874.32 - $359,978.25 = $71,896.07
So the correct answer is option B: $359,978.25.
The equation of a straight line that is parallel to a straight line. 2y =3x-1
The equation of the line that is parallel to 2y = 3x - 1 and passes through the point (4, 2) is: y = (3/2)x - 4
To find the equation of a straight line that is parallel to the line 2y = 3x - 1, we need to remember that parallel lines have the same slope.
First, let's rearrange the given equation into slope-intercept form, y = mx + b, where m is the slope and b is the y-intercept:
2y = 3x - 1
y = (3/2)x - 1/2
So the slope of this line is 3/2.
Now, if we want to find the equation of a line that is parallel to this line, we just need to use the same slope. Let's call the new line y = mx + b, where m is the slope we just found and b is the y-intercept we need to find.
So the equation of the parallel line is:
y = (3/2)x + b
To find the value of b, we need to use a point on the line. Let's say we want the line to go through the point (4, 2):
2 = (3/2)(4) + b
2 = 6 + b
b = -4
So the equation of the line that is parallel to 2y = 3x - 1 and passes through the point (4, 2) is: y = (3/2)x - 4
To know more about straight line, here
https://brainly.com/question/25969846
#SPJ4
1 point) A poll is taken in which 330 out of 550 randomly selected voters indicated their preference for a certain candidate. (a) Find a 90% confidence interval for p. 0.557 < p 0.642 (b) Find the margin of error for this 90% confidence interval for p. 0.042 (c) Without doing any calculations, indicate whether the margin of error is larger or smaller or the same for an 80% confidence interval. A. larger B. smaller C. same
This is because as the level of confidence decreases, the corresponding z-score becomes smaller, which in turn results in a smaller margin of error.
(a) To find a 90% confidence interval for the proportion p, we can use the formula:
CI = p ± z*(sqrt(p*(1-p)/n))
where p is the sample proportion, n is the sample size, and z is the z-score corresponding to the desired level of confidence (in this case, 90%).
We are given that p = 330/550 = 0.6 and n = 550. Using a standard normal distribution table, the z-score for a 90% confidence interval is approximately 1.645.
Substituting these values into the formula, we get:
CI = 0.6 ± 1.645*(sqrt(0.6*(1-0.6)/550))
= 0.6 ± 0.042
= (0.558, 0.642)
Therefore, a 90% confidence interval for the proportion of voters who indicated their preference for the candidate is 0.558 to 0.642.
(b) The margin of error for this 90% confidence interval is given by:
ME = z*(sqrt(p*(1-p)/n))
where z is the z-score corresponding to the desired level of confidence and p and n are as before.
Substituting the values we obtained earlier, we get:
ME = 1.645*(sqrt(0.6*(1-0.6)/550))
= 0.042
Therefore, the margin of error for this 90% confidence interval is 0.042.
(c) Without doing any calculations, we can see that the margin of error for an 80% confidence interval will be smaller than that for a 90% confidence interval. This is because as the level of confidence decreases, the corresponding z-score becomes smaller, which in turn results in a smaller margin of error.
To learn more about visit:
https://brainly.com/question/1597341
#SPJ11
True or false: A set is considered closed if for any members in the set, the result of an operation is also in the set
False. A set is considered closed under an operation if the result of that operation on any two elements in the set also belongs to the set.
A set is considered closed if it contains all of its limit points. In other words, if a sequence of points in the set converges to a point that is also in the set, then the set is closed. Another equivalent definition is that the complement of the set.
In mathematics, sets are collections of distinct objects. These objects can be anything, including numbers, letters, or even other sets. The concept of sets is fundamental in mathematics and is used to define many other mathematical structures.
Sets can be denoted in various ways, including listing the elements inside curly braces { }, using set-builder notation, or using set operations to define new sets from existing ones. Some common set operations include union, intersection, difference, and complement.
To learn more about Set visit:
https://brainly.com/question/18877365
#SPJ4
TASK 5
What is the mean of the distribution below?
CODE: Enter the mean as your code. Do NOT round your answer. Enter all
decimal places. Put the decimal in the correct spot as well
10
END OF THE YEAR - ESCAPE ROOM
Movie Theme
X
X
Weights of Dogs
X
X
X
X
XX X X
15
20
X
X
X
X
25
Weight in pounds
X
X
30
Mtd
's M
The mean of the data-set in this problem is given as follows:
19.56 pounds.
How to calculate the mean of a data-set?The mean of a data-set is given by the sum of all observations in the data-set divided by the number of observations, which is also called the cardinality of the data-set.
The dot plot shows the number of times that each observation appears, hence the observations are given as follows:
2 of 12 pounds.4 of 15 pounds.1 of 16 pounds.1 of 18 pounds.2 of 20 pounds.1 of 22 pounds.3 of 25 pounds.2 of 29 pounds.Hence the mean is given as follows:
Mean = (2 x 12 + 4 x 15 + 1 x 16 + 1 x 18 + 2 x 20 + 1 x 22 + 3 x 25 + 2 x 29)/(2 + 4 + 1 + 1 + 2 + 1 + 3 + 2)
Mean = 313/16
Mean = 19.56 pounds.
More can be learned about the mean of a data-set at https://brainly.com/question/1136789
#SPJ1
Pete’s plumbing was just hired to replace the water pipes in the Johanssons house Pete has two types of pipes. He can use a pipe with a radius of 8pm or a pipe with radius of 4cm
The 4cm pipes are less expensive then the 8cm pipes for Pete to buy so Pete wonders if there are a number of 4cm pipes he could use that would give the same amount of water to the Johanssons house as one 8cm pipe
Circles and ratios water pipes
It would take 4 pipes with a radius of 4cm to replace one pipe with a radius of 8cm and provide the same amount of water flow.
We have,
The volume of water that can flow through a pipe is proportional to the cross-sectional area of the pipe.
The formula for the area of a circle is:
A = πr²
where A is the area of the circle and r is the radius of the circle.
For a pipe with a radius of 8cm, the cross-sectional area is:
A_8cm = π(8cm)²
= 64π cm²
For a pipe with a radius of 4cm, the cross-sectional area is:
A_4cm = π(4cm)²
= 16π cm²
To find out how many 4cm pipes would be needed to replace one 8cm pipe, we can compare the areas of the two pipes:
Number of 4cm pipes
= A_8cm / A_4 cm
= (64π) / (16π)
= 4
Therefore,
It would take 4 pipes with a radius of 4cm to replace one pipe with a radius of 8cm and provide the same amount of water flow.
Learn more about pipes here:
https://brainly.com/question/31180984
#SPJ1
PLEASE HELP ME! THANK YOU!
Answer:
138°
235°
240°
Step-by-step explanation:
The first situation shows a straight angle, so the smaller angles that make it up should be supplementary. That means that their measures add up to 180°. My work for this first situation is shown below:
n + 42° = 180°
n + 42° - 42° = 180° - 42°
n = 138°
Now, let's look at the second situation. This one's pretty simple. It's just asking us to add up the measures of all the angles are given, so all we have to do is some addition, shown below:
23° + 40° + 92° + 80° = 235°
Finally, we're at the last situation. This situation shows a full angle, so the smaller angles that make it up should add up to 360°, since this is the amount of degrees in a full circle. Again, if we know the measure of one of these angles, we should be able to find the measure of the other one. See my work below:
n + 120° = 360°
n + 120° - 120° = 360° - 120°
n = 240°
And there are all your answers! Let me know if you need further clarification on all that. :)
Figure A is dilated with scale factor r=3 to create figure A′ .
Answer:
r=3 to dilation
Step-by-step explanation:
([[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[]]]]]]]]]]]]]]]]]]]]]]]]]]]])
This is one of my favorite probability problems. It uses many useful and powerful facts from probability.) Let X(t) be a stationary Gaussian random process with mX(t)=0 and RX(τ)=2e−5∣τ∣. Let Z=X(2)+ X(3). Find fZ(z), the probability density function of Z
The probability density function of Z is fZ(z) = (1/√(2π(4 + 2e^(-5)))) * e^(-z^2/(2(4 + 2e^(-5))))
Given that X(t) is a stationary Gaussian random process with mX(t) = 0 and RX(τ) = 2e^(-5|τ|).
We are interested in finding the probability density function (PDF) of Z = X(2) + X(3).
First, we need to find the mean and variance of Z:
E[Z] = E[X(2) + X(3)] = E[X(2)] + E[X(3)] = 0 + 0 = 0
Var(Z) = Var(X(2) + X(3)) = Var(X(2)) + Var(X(3)) + 2Cov(X(2), X(3))
Since X(t) is a stationary process, we have:
Var(X(2)) = Var(X(3)) = RX(0) = 2
Cov(X(2), X(3)) = RX(1) = 2e^(-5)
Therefore, Var(Z) = 2 + 2 + 2e^(-5) = 4 + 2e^(-5)
Now we can use the properties of Gaussian random variables to find the PDF of Z. Since Z is a linear combination of Gaussian random variables, it is also Gaussian with mean 0 and variance 4 + 2e^(-5).
Thus, fZ(z) = (1/√(2π(4 + 2e^(-5)))) * e^(-z^2/(2(4 + 2e^(-5)))).
Therefore, the probability density function of Z is fZ(z) = (1/√(2π(4 + 2e^(-5)))) * e^(-z^2/(2(4 + 2e^(-5))))
To learn more about properties visit:
https://brainly.com/question/30034780
#SPJ11
Which of the following ordered pairs is a solution of 5x + 2y = -3?
a. (2, -4) c. (1, -4)
b. (-4, 2) d. (-4, 1)
The ordered pair (1, -4) is the solution of equation 5x + 2y = -3.
We can check which of the ordered pairs is a solution of equation 5x + 2y = -3 by substituting the values of x and y in the equation and checking if it is true.
a. (2, -4)
Substituting x = 2 and y = -4 in 5x + 2y = -3, we get:
5(2) + 2(-4) = 10 - 8 = 2
So, (2, -4) is not a solution to the equation.
Similarly
b. (-4, 2)
5(-4) + 2(2) = -20 + 4 = -16
So, (-4, 2) is not a solution to the equation.
c. (1, -4)
5(1) + 2(-4) = 5 - 8 = -3
So, (1, -4) is a solution to the equation.
d. (-4, 1)
5(-4) + 2(1) = -20 + 2 = -18
So, (-4, 1) is not a solution to the equation.
Therefore, the ordered pair (1, -4) is the solution of equation 5x + 2y = -3.
Learn more about the ordered pair here:
https://brainly.com/question/30805001
#SPJ1
What is mzQPS?
A. 68
B. 71
C. 84
D. cannot be determined
The value of the angle m<QPS cannot be determined. Option D
How to determine the valueTo determine the value of the angle, we need to take note of the properties of a parallelogram
The opposite sides are parallel and equal.The opposite angles are also equal.The consecutive or adjacent angles are supplementary, that is, they sum up to 180 degrees
From the information given, we have that;
m<R = 6x -14
m<Q = 3x + 8
m< S= 5x + 4
The value of the angle , QPS cannot be determined because the angle is not represented with any variable for calculation
Learn more about parallelogram at: https://brainly.com/question/10744696
#SPJ1
Help me please , I really don't understand this ( Find the major arc, Give an exact answer in terms of pi and be sure to include the correct unit.)
In the given circle, the length of major arc LNM is 29/3(π)
Calculating the length of an arcFrom the question, we are to calculate the length of the major arc in the given diagram
Length of an arc is given by the formula
Length = θ/360° × 2πr
Where θ is the angle subtended by the arc at the center of the circle
r is the radius of the circle
From the given information,
r = 6 cm
θ = 360° - 70°
θ = 290°
Substitute the parameters into the formula
Length = 290/360 × 2×π×6
Length = 29/3(π)
Hence,
Length of arc LNM is 29/3(π)
Learn more on Calculating length of an arc here: https://brainly.com/question/31314204
#SPJ1
Prove that for all real numbers r > 0,8 >0 and all vectors a, b, c in a normed vector space V.
a. Br(α) ⊂ Bs(b)→Br(α+2c)⊂Bs(b+2c)
b.Br(α) ⊂ Bs(b)→Br(α+1/2c)⊂Bs(b+1/2c)
X is in Bs(b+1/2c), which implies Br(α+1/2c)⊂Bs(b+1/2c).
a. We want to show that Br(α+2c)⊂Bs(b+2c) given that Br(α)⊂Bs(b).
Let x be any element in Br(α+2c), then we have ||x-(α+2c)|| < r.
Using the triangle inequality, we get:
||x-(α+2c)|| = ||(x-α)-2c|| ≤ ||x-α||+2||c|| < r+2||c|| = 8 (since r > 0 and ||c|| < 4).
So, ||x-α|| < 8 - 2||c|| < 2.
Thus, x is also in Br(α) ⊂ Bs(b), which implies ||x-b|| < r.
Using the triangle inequality again, we have:
||x-(b+2c)|| = ||(x-b)-2c|| ≤ ||x-b||+2||c|| < r+2||c|| = 8.
Therefore, x is in Bs(b+2c), which implies Br(α+2c)⊂Bs(b+2c).
b. We want to show that Br(α+1/2c)⊂Bs(b+1/2c) given that Br(α)⊂Bs(b).
Let x be any element in Br(α+1/2c), then we have ||x-(α+1/2c)|| < r.
Using the triangle inequality, we get:
||x-(α+1/2c)|| = ||(x-α)-1/2c|| ≤ ||x-α||+1/2||c|| < r+1/2||c|| = 4 (since r > 0 and ||c|| < 8).
So, ||x-α|| < 4 - 1/2||c|| < 3.
Thus, x is also in Br(α) ⊂ Bs(b), which implies ||x-b|| < r.
Using the triangle inequality again, we have:
||x-(b+1/2c)|| = ||(x-b)-1/2c|| ≤ ||x-b||+1/2||c|| < r+1/2||c|| = 4.
Therefore, x is in Bs(b+1/2c), which implies Br(α+1/2c)⊂Bs(b+1/2c).
To learn more about Using visit:
https://brainly.com/question/8723368
#SPJ11
A random variable X has possible values of 1-6. Would the following value of X be included if we want at most 4? Choose yes if the value is included.
No, the value would not be included if we want at most 4. In statistics, a variable is a characteristic or attribute that can be measured or observed.
A random variable is a variable whose value is determined by chance or probability. The possible values of a random variable are called its values. In this case, the random variable X has possible values of 1-6. If we want at most 4, this means we want all the values of X that are less than or equal to 4. Therefore, the value in question (which we don't know) would only be included if it is less than or equal to 4. If it is greater than 4, then it would not be included. To summarize, whether the value of X is included or not depends on whether it is less than or equal to 4, which is the condition we have set.
Learn more about variable here:
brainly.com/question/29691945
#SPJ11
Prove/disprove that the units/ones digit of 5221 is 3.
The units/one's digit of 5^221 is 5.
To determine the units/one unit digit of a number raised to a power, we only need to consider the units/one's digit of the base. In this case, the unit digit of 5 is 5.
Now, we need to look for a pattern in the units digit of 5 raised to different powers.
5^1 = 5 (units digit is 5)
5^2 = 25 (units digit is 5)
5^3 = 125 (units digit is 5)
5^4 = 625 (units digit is 5)
5^5 = 3125 (units digit is 5)
. . .and so on.
We can see that the unit digit of 5 raised to any power is always 5. Therefore, the units/one's digit of 5^221 is 5, not 3.
So, the statement "the units/one's digit of 5^221 is 3" is disproved.
Learn more about units:
https://brainly.com/question/141163
#SPJ11
employees at an antique store are hired at a wage of $15 per hour, and they get a $0.75 raise each year. write an equation that shows how a worker's hourly wage, y, depends on the number of years he or she has worked at the store,
To represent the hourly wage of an employee at the antique store, we can use the following equation:
y = 15 + 0.75x
where y represents the worker's hourly wage, and x represents the number of years the employee has worked at the store. In this equation, 15 is the initial hourly wage, and 0.75 is the annual raise.
The equation that shows how a worker's hourly wage, y, depends on the number of years he or she has worked at the store can be written as:
y = 15 + 0.75x
where x represents the number of years the employee has worked at the antique store.
This equation takes into account the starting wage of $15 per hour and the $0.75 raise that the employee receives each year they work at the store.
So, for example, if an employee has worked at the store for 5 years, their hourly wage would be:
y = 15 + 0.75(5) = 18.75
where y represents the worker's hourly wage, and x represents the number of years the employee has worked at the store.
Learn more about Number:
brainly.com/question/17429689
#SPJ11
Exercise 4. Let n ≥ 2 be an even integer. Determine in how many ways we can color an nxn floor (split into a grid of 1 x 1 tiles) with k colors; we consider two colorings to be the same if we obtain one from the other by rotating the grid.
The number of ways to color an nxn floor with k colors for an even integer n is:
4 * k^(n^2/4).
To determine the number of ways to color an nxn floor with k colors for an even integer n, and considering two colorings to be the same if obtained by rotating the grid, we need to follow these steps:
1. Identify the even integer n and the number of colors k.
2. Calculate the number of unique configurations considering rotations. For a grid of size nxn, there are 4 unique rotations (0, 90, 180, and 270 degrees).
3. For each unique rotation, calculate the number of possible colorings. Since each tile in the grid can be any of the k colors, the number of colorings for each unique rotation is k^(n^2/4), assuming n is divisible by 4.
4. Add up the colorings for all unique rotations. Since there are 4 unique rotations, the total number of colorings, considering rotations to be the same, is 4 * k^(n^2/4).
So, the number of ways to color an nxn floor with k colors for an even integer n, considering two colorings to be the same if obtained by rotating the grid, is 4 * k^(n^2/4).
To learn more about permutations visit : https://brainly.com/question/1216161
#SPJ11
(b) If the critical value is 4.605 at a significance level of 0.10, can we reject the null hypothesis? State your reason. (3 marks) QUESTION A6 (5 marks) An article studied the relation between the number of accidents, y, and the difference between the width of the bridge and roadway, x, (in feet) in a city. The author had developed its regression equation, y= 74.7 - 6.44x.
(a) State the dependent and independent variables for the above problem. (2 marks) (b) Estimate the number of accidents occurred if the difference of the width is 8 feet. (3 marks)
(a) The dependent variable is the number of accidents, y. The independent variable is the difference between the width of the bridge and roadway, x.
(b) To estimate the number of accidents if the difference of the width is 8 feet, we substitute x = 8 into the regression equation:
y = 74.7 - 6.44(8) = 24.58
Therefore, we estimate that there would be 24.58 accidents if the difference of the width is 8 feet.
As for the earlier question, the answer would be:
We need to calculate the test statistic to determine if we can reject the null hypothesis. The test statistic is calculated as:
test statistic = (sample mean - null hypothesis value) / (standard error of the sample mean)
Since the question does not provide any sample mean or standard error, we cannot calculate the test statistic. Therefore, we cannot determine if we can reject the null hypothesis based on the critical value alone.
https://brainly.com/question/31700335
#SPJ11
Can i get this by midnight or tmr thanks!
Answer: 1: C=72.3822947387, A=416.560184761, 2: C=37.6991118431, A=113.097335529
Step-by-step explanation:
For the first circle, since the area of a circle is equal to pi multiplied by the radius squared, we can use this equation:
[tex]\pi11.52^{2}[/tex]
Now we can multiply the radius by 2 to get the diameter, which is 23.04, and multiply the diameter by pi to get the circumference, 72.3822947387.
If you want an exact circumference, all you need to do is display the diameter multiplied by pi without simplification, which would look like this:
23.04π.
We can do the same thing for the second circle. Because we already have the diameter, I will start with the circumference.
12pi = 37.6991118431, which is just simplified to 12pi. The reason you want to have pi in your answer for an exact answer, is because otherwise your answer would have to be an irrational decimal constant, which cannot fit on one page.
Now for the area of the second circle. Divide the diameter by 2, and multiply pi by the radius squared. This is an equation that would look something like this:
[tex]\pi6^{2}[/tex], which can simplify to [tex]\pi36[/tex] as an exact answer.
Find the Maclaurin series for using the definition of a Maclaurin series. [Assume that has a power series expansion. Do not show that Rn(x) tends to 0.] Also find the associated radius of convergence. f(x)=/(1-x)^-2
Answer: i do not know but watch this: Find the Maclaurin series for f(x) = (1-x)^(-1) and associated radius of convergence by Ms. Shaws Math Class
What are all the different ways to choose the ones digit, A, in the number 572435 A, so that the number will be divisible by 3? Explain your reasoning.
The different ways to choose the ones digit A are:
- A can be any digit if the sum of the first 6 digits is divisible by 3.
- A can be 2, 5, or 8 if the sum of the first 6 digits leaves a remainder of 1 when divided by 3.
- A can be 1, 4, 7, or 0 if the sum of the first 6 digits leaves a remainder of 2 when divided by 3.
To determine if a number is divisible by 3, we can add up the digits and check if the sum is divisible by 3. For the number 572435A, the sum of the first 6 digits is 5 + 7 + 2 + 4 + 3 + 5 = 26. We need to add a number A to this sum to make it divisible by 3.
There are three possible scenarios to make the sum divisible by 3:
1. If the sum of the first 6 digits is already divisible by 3, then any digit A can be added to the end to make the number divisible by 3. In this case, the sum of the first 7 digits will also be divisible by 3.
2. If the sum of the first 6 digits leaves a remainder of 1 when divided by 3, then A must be 2, 5, or 8. Adding any other digit to the end will result in a sum that is not divisible by 3. In this case, adding 2, 5, or 8 to the end of the number will result in a sum of digits that is divisible by 3.
3. If the sum of the first 6 digits leaves a remainder of 2 when divided by 3, then A must be 1, 4, 7, or 0. Adding any other digit to the end will result in a sum that is not divisible by 3. In this case, adding 1, 4, 7, or 0 to the end of the number will result in a sum of digits that is divisible by 3.
Therefore, the different ways to choose the ones digit A in the number 572435A so that the number will be divisible by 3 are:
- A can be any digit if the sum of the first 6 digits is divisible by 3.
- A can be 2, 5, or 8 if the sum of the first 6 digits leaves a remainder of 1 when divided by 3.
- A can be 1, 4, 7, or 0 if the sum of the first 6 digits leaves a remainder of 2 when divided by 3.
To learn more about permutations visit : https://brainly.com/question/1216161
#SPJ11
The power series (r- 5)" 22 has radius of convergence 2 At which of the following values of x can the alternating series test be used with this series to verify convergencer at x? A B 4 с 2 D 0 The alternating series test can be used to show convergence of which of the following alternating series? 14- ) +1-82+ 1 4 1 720 + 1 16 + a + ..., wherea, {} ifnis even in sodd + 1 6 + 5 +1 +...+an +..., where an 3 $ 9 u 13 15 +an + ..., where a, = (-1)". 2+1 I only B ll only С ill only D I and II only E III and III
Answer:
The alternating series test states that if the terms of an alternating series decrease in absolute value and approach zero, then the series converges.
For the power series (r - 5)^n/22 with radius of convergence 2, the alternating series test can be used at x = 2 and x = -2. This is because the alternating series test requires the terms to decrease in absolute value, and for values of x beyond the radius of convergence, the terms of the series increase in absolute value and do not approach zero.
For the given alternating series:
1/4 - 1/2 + 1/8 - 2/720 + 1/16 - ...
The terms decrease in absolute value and approach zero, so the alternating series test can be used to verify convergence.
1/6 + 5/13 + ... + a_n
Since a_n is odd and greater than 3, the terms do not alternate in sign and the alternating series test cannot be used to verify convergence.
(-1)^n (2n+1)/(n+1)
The terms decrease in absolute value and approach zero, so the alternating series test can be used to verify convergence.
Step-by-step explanation:
The answer is D, I and II only. The alternating series test can be used to verify convergence of an alternating series, which means the signs of the terms alternate.
In the given power series (r-5) ^22, there is no alternating pattern of signs, so the alternating series test cannot be used to verify convergence of this series at any value of x. Therefore, the answer is none of the options provided (N/A).
For the second part of the question, we need to check each series to see if they have an alternating pattern of signs. The first series (1/4^n) has all positive terms, so the alternating series test cannot be used to verify convergence of this series. The second series (-1)^n(1/2^n) has alternating signs, so the alternating series test can be used to verify convergence of this series. The third series (-1)^n(1/(4n+1)) also has alternating signs, so the alternating series test can be used to verify convergence of this series. Therefore, the answer is D, I and II only.
Learn more about alternating series here:
brainly.com/question/30761258
#SPJ11
The half-life of radium is 1620 year what fraction of the radium sample will remain after 3240 years
So, 0.25 or 25% of the radium sample will remain after 3240 years.
The decay chain for radium-226 is as follows: radium-226 has a half-life of 1600 years and produces an alpha particle and radon-222; radon-222 has a half-life of 3.82 days and produces an alpha particle and polonium-218; polonium-218 has a half-life of 3.05 minutes and produces an alpha particle and lead-214; lead-214 has a half-life of 26.8 minutes and produces.
The half-life of radium is 1620 years, which means that after 1620 years, half of the radium sample will decay, and the remaining half will remain. After another 1620 years (3240 years total), the remaining half will decay, and half of that half, or one-fourth of the original sample, will remain.
Therefore, after 3240 years, the fraction of the radium sample that will remain is:
Formula used :[tex]N(t)=2^{-t/1620}[/tex]
[tex]N(t)=2^{-3240/1620}[/tex]
= 1/4
= 0.25
Learn more about radium visit: brainly.com/question/31436084
#SPJ4
(7, 1) and (-2, 3)
Slope =
The slope of the line passing through (7,1) and (-2,3) is -2/9.
We use the following formula to get the slope of a line through two specified points:
slope = (y2 - y1) / (x2 - x1)
where (x1, y1) and (x2, y2) are the coordinates of the two points.
We can calculate the slope of the line passing through the points (7, 1) and (-2, 3) using this formula:
slope = (3 - 1) / (-2 - 7) = 2 / (-9) = -2/9
Therefore, the slope of the line passing through the points (7, 1) and (-2, 3) is -2/9.
The slope of a line, in geometric terms, is the ratio of the vertical change (rise) to the horizontal change (run). If the slope is negative, the line is decreasing as we move from left to right. With a slope of 2 units downward for every 9 units to the right, the line is sloping downward from left to right.
To know more about the slope,
https://brainly.com/question/1884491
https://brainly.com/question/29044610
There are 5 quadratics below. Four of them have two distinct roots each. The other has only one distinct root; find the value of that root.a. 4x^2 + 16x − 9b. 2x^2 + 80x + 400c. x^2 − 6x − 9d. 4x^2 − 12x + 9e. −x^2 + 14x + 49
Answer:
x = 3/2 or 1.5
Step-by-step explanation:
All 5 of the quadratics are in standard form, whose general form is[tex]ax^2+bx+c[/tex]
One of the ways in which we solve quadratic equations is through the quadratic formula which is[tex]x=\frac{-b+/-\sqrt{b^2-4ac} }{2a}[/tex], where x is the root(s)
We can find the total number of solutions a quadratic equation has using the discriminant from the quadratic formula which is[tex]b^2-4ac[/tex]
When the discriminant is greater than 0, there is 2 distinct rootsWhen the discriminant is equal to 0, there is 1 distinct rootWhen the discriminant is less than 0, there are 0 distinct/"real" roots(a.) For 4x^2 + 16x - 9b, 4 is our a value, 16 is our b value and -9 is our c value:
[tex]16^2-4(4)(-9)\\256+144\\400 > 0[/tex]
(b.) For 2x^2 + 80x + 400, 2 is our a value, 80 is our b value, and 400 is our c value:
[tex]80^2-4(2)(400)\\6400-3200\\3200 > 0[/tex]
(c.) For x^2 - 6x - 9, 1 is our a value, -6 is our b value and -9 is our c value
Quick fact: for x^2 or -x^2, there's a 1 or -1 in front of the variable, but it's usually not written because it's a well known mathematical effect and it's assumed we already know this)[tex](-6)^2-4(1)(-9)\\36+36\\72 > 0[/tex]
(d.) For 4x^2 - 12x + 9, 4 is our a value, -12 is our b value, and 9 is our c value:
[tex](-12)^2-4(4)(9)\\144-144\\0=0[/tex]
We don't have to do (e.) because we see that since the discriminant for (d.) equals 0, this is the quadratic with only one distinct solution/rootWe can now solve for this root using the quadratic formula[tex]x=\frac{-(-12)+/-\sqrt{(-12)^2-4(4)(9)} }{2(4)}\\ \\x=\frac{12+/-\sqrt{0} }{8} \\\\x=12/8=3/2\\or\\x=1.5[/tex]
A 12-sided dice has equal-sized faces numbered 1 to 12
a. Find P(number greater than 10)
b. Find P(number less than 5)
c. if the 12-sided dice is rolled 200 times, how many times would you expect either a 4,6, or 9 to be rolled
The solution is, the probability that exactly two of the dice show an even number is 0.3125.
We will use the Binomial Probability formula to find the answer
The formula is given by ⁿCₓ (p)ˣ (1-p)ⁿ⁻ˣ
Where:
n, the number of trials = 5
x, the number of success that we aim = 2
p, the probability of success = 0.5 ⇒ there are six out of twelve numbers on the dice that are even
Substitute these values into the formula, we have
P(2) = ⁵C₂ (0.5)² (1-0.5)⁵⁻²
P(2) = ⁵C₂ (0.5)² (0.5)³
P(2) = 0.3125
The solution is, the probability that exactly two of the dice show an even number is 0.3125.
To learn more on probability click:
brainly.com/question/11234923
#SPJ1
complete question:
Ben rolls 5 fair 12-sided dice. the 12 faces of each die are numbered from 1 to 12. what is the probability that exactly two of the dice show an even number?
16. Express the line 13x - 14y = 70 in slope intercept form
The line 13x - 14y = 70 expressed in slope-intercept form is y = (13/14)x - 5.
Here are the steps to follow:
Step 1: Start with the given equation, which is in standard form: 13x - 14y = 70.
Step 2: Solve for y to put it in slope-intercept form (y = mx + b, where m is the slope and b is the y-intercept).
First, subtract 13x from both sides of the equation:
-14y = -13x + 70
Next, divide both sides by -14:
y = (13/14)x - 5
Learn more about slope-intercept form: https://brainly.com/question/1884491
#SPJ11