An automobile company is running a new television commercial in five cities with approximately the same population. The following table shows the number of times the commercial is run on TV in each city and the number of car sales (in hundreds). Find the linear regression line for the data given in the table. Round any intermediate calculations to no less than six decimal places, and round the coefficients to two decimal places.

Number of TV commercials, x 4
4
6
12
17
Car sales, y (in hundreds)
2
5
8
9

Answers

Answer 1

The linear regression equation for the data given in the table is presented as follows:

y = 0.51x + 1.07.

How to find the equation of linear regression?

To find the regression equation, which is also called called line of best fit or least squares regression equation, we need to insert the points (x,y) in the calculator. These points are usually given in a scatter plot or in a table.

The points for the data-set in this problem are given as follows:

(4,2), (6, 5), (12, 8), (17,9).

Inserting these four points into a linear regression calculator, the linear regression equation for the data given in the table is presented as follows:

y = 0.51x + 1.07.

More can be learned about linear regression at https://brainly.com/question/29613968

#SPJ1


Related Questions

Pls Help me with this problem, I will give brainliest to whoever answers this correctly. Answer is not x=0.1

Answers

Answer: the equation have two solutions: 0.25 and 0.75

[tex]x=\frac{1}{4}[/tex]  or  [tex]x=\frac{3}{4}[/tex]

Step-by-step explanation:

Notice the terms [tex]x+x^2+x^3+x^4+...+x^n[/tex] is just a geometric series (since -1<x<1)

A geometric series is given by the form

[tex]1+x+x^2+x^3+x^4+...+x^n = \frac{1}{1-x}[/tex]
This is
[tex]x+x^2+x^3+x^4+...+x^n = \frac{1}{1-x} -1[/tex]
plugging in in the equation

[tex]-1+\frac{1}{x} +\frac{1}{1-x} -1=\frac{10}{3}[/tex]

grouping terms

[tex]\frac{1}{x} +\frac{1}{1-x} =\frac{16}{3}[/tex]
groupings the fractions

[tex]\frac{1-x+x}{(x)(1-x)}=\frac{1}{(x)(1-x)} =\frac{16}{3}[/tex]

this leads to an simplified quadratic equation since X cannot be zero (notice the initial 1/x term)

[tex]3=16(x^2-x)[/tex]
the solution for this quadratic equation is just

[tex]x=\frac{1}{4}[/tex]  or  [tex]x=\frac{3}{4}[/tex]

Answer:

  1/4 or 3/4

Step-by-step explanation:

You want the value of x in the infinite sum ...

  -1 +1/x +x +x² +x³ +...  = 10/3

for |x| < 1.

Geometric series

After the 2nd term, this looks like a geometric series with a common ratio of x. If we define the series sum as ...

  S = 1/x +1 +x +x² +x³ +...

we see that the equation of interest is ...

  S -2 = 10/3

Sum

The series sum is that of a geometric series with first term 1/x and common ratio x:

  S = (1/x)(1/(1 -x)) = 1/(x(1-x))

Substituting for S in the above, we have the equation ...

  1/(x(1-x)) -2 = 10/3

Solution

This resolves to a quadratic that will have 2 real roots:

  1/(x(1 -x)) = 16/3 . . . . add 2

  x(1 -x) = 3/16 . . . . . . . invert both sides

  x² -x +3/16 = 0 . . . . . .  subtract the left side expression

  (x -3/4)(x -1/4) = 0 . . . . . factor

Solutions are the values of x that make these factors zero:

  x = 1/4 or x = 3/4

Mitchell is an ecologist studying bonobos, a species of ape that lives in the Congolian rainforest. When he started his study, there was a population of about 40,000 bonobos. After one year, he estimated that the population had decreased to 39,200. Based on his data, Mitchell expects the population to continue decreasing each year.
Write an exponential equation in the form y=a(b)x that can model the bonobo population, y, x years after Mitchell began studying them.
Use whole numbers, decimals, or simplified fractions for the values of a and b.
Y=?
To the nearest hundred, what can Mitchell expect the bonobo population to be 7 years after the study began?
--bonobos

Answers

Answer:

P(x)=[tex](40000)( 0.98)^x[/tex]

A=40000    B=0.98
P(7)= 34700

Step-by-step explanation:

Notice the population can be modeled as:

P(x)=[tex]A B^x[/tex]

For X=0 P(0)=40000=A (Initial population)
So A=40000
For x=1 (one year after) P=39200

[tex]39200=40000 B^1[/tex]
solving for B
[tex]B=\frac{39200}{40000} =0.98[/tex]
So B=0.98

So the population can be modeled as

P(x)=[tex](40000)( 0.98)^x[/tex]

Now at 7 years:

P(7)=[tex](40000)( 0.98)^7[/tex]= 34725.02133
Needs to be rounded to the nearest hundred
This is 34700 bonobos (7 years after the study began)

Two positions of an open gate are shown.
The triangles show the position of the gate in relation to its closed position. The distance from G to H in Position 1 is less than the distance from G to H in Position 2.
What can you conclude about the angles opposite these sides?

Answers

Answer: Right Picture

Step-by-step explanation:

Mark me as brainleanst

Example 3: Solve the word problems involving angles of elevation and depression.
You are flying a kite overhead. The angle of elevation is 65°. The length of string used is 75 ft. How high is the
kite?
a.
b. Joe is standing in a bell tower 210 feet tall. He looks down at an angle of depression towards Jill who is standing
on the ground. How far is Jill from the bell tower?
Example 4: Additional Word Problems
2.
The two equal angles of an isosceles triangle are each 70°. Determine the measures of the rest of the triangle if it
has a height of 16cm.
b. A ramp leading into the public library is 25 feet long. The ramp rises a total of 2 feet. Is the ramp to code
according to ADA standards? (The angle of incline must be less than 4.76 degrees.)

Answers

Step-by-step explanation:

3)

a. To find the height of the kite, we can use trigonometry. The sine function relates the opposite side (the height of the kite) to the hypotenuse (the length of string used) and the angle of elevation. Therefore, we can write:

sin(65°) = height/75

Solving for the height, we get:

height = 75 sin(65°) = 67.8 ft

Therefore, the kite is 67.8 feet high.

b. To find the distance between Joe and Jill, we can use trigonometry again. The tangent function relates the opposite side (the distance between Joe and Jill) to the adjacent side (the height of the bell tower) and the angle of depression. Therefore, we can write:

tan(angle of depression) = opposite/adjacent

tan(angle of depression) = Jill's height/210

Solving for the distance between Joe and Jill, we get:

distance = adjacent * tan(angle of depression)

distance = 210 * tan(angle of depression)

We need to know the angle of depression to solve for the distance, which is not given in the problem.

4)

a. In an isosceles triangle with two equal angles of 70°, the third angle must be:

180° - 70° - 70° = 40°

Since the triangle is isosceles, the height must be the perpendicular bisector of the base. Therefore, we can draw an altitude from the top vertex to the base, splitting the base into two equal segments. Let x be the length of each base segment. Then we can use trigonometry to find the height:

tan(70°) = height/x

height = x * tan(70°)

Since the height is given as 16 cm, we can solve for x:

16 = x * tan(70°)

x = 16/tan(70°)

Therefore, the length of each base segment is:

x = 16/tan(70°) = 6.12 cm

And the length of the base is twice the length of each segment:

base = 2x = 2(16/tan(70°)) = 12.25 cm

Therefore, the measures of the rest of the triangle are:

base = 12.25 cm

each equal angle = 70°

height = 16 cm

b. To determine if the ramp meets ADA standards, we need to find the angle of incline. The angle of incline is the angle between the ramp and the horizontal. We can use trigonometry to find this angle:

sin(angle of incline) = rise/run

sin(angle of incline) = 2/25

angle of incline = sin^(-1)(2/25)

Using a calculator, we get:

angle of incline ≈ 4.79°

Since the angle of incline is greater than the maximum allowable angle of 4.76°, the ramp does not meet ADA standards.

The average rate of change from x=2 to x=5

Answers

Answer:

4/3 from x = 2 to x = 5.

Step-by-step explanation:

What is Lagrange mean value theorem?

Lagrange mean value theorem states that, if a function f is continuous over the closed interval [a, b] and differentiable over the open interval (a, b), then there must be at least one point c in the interval (a, b) where the slope of the tangent at the point c is equal to the slope of the tangent through the curve's endpoints, resulting in the expression f'(c) = {F(b) -F(a)}/(b-a)

According to the given graph,

At point x = 2,

F(2) = 3

At point x = 5,

F(5) = 7

Since the formula for the average rate of change of the function between x = a and x = b is,

The average rate of change = {F(b) -F(a)}/(b-a)

Here a = 2, b = 5 and F(2) = 3, F(5) = 7

Substitute the values in the formula,

So the average rate of change = (7 - 3)/(5 - 2) = 4/3.

Hence, the average rate of change of the function is 4/3.

Check the picture below.

[tex]\begin{array}{llll} f(x)~from\\\\ x_1 ~~ to ~~ x_2 \end{array}~\hfill slope = m \implies \cfrac{ \stackrel{rise}{f(x_2) - f(x_1)}}{ \underset{run}{x_2 - x_1}}\impliedby \begin{array}{llll} average~rate\\ of~change \end{array} \\\\[-0.35em] ~\dotfill\\\\ \begin{cases} x_1=2\\ x_2=5 \end{cases}\implies \cfrac{f(5)-f(2)}{5 - 2}\implies \cfrac{7-3}{5-2}\implies \cfrac{4}{3}[/tex]



Determine the value of x.

Answers

Answer:

x = 10 (B)

Step-by-step explanation:

Use trigonometry:

[tex] \sin(30°) = \frac{5}{x} [/tex]

[tex] \frac{1}{2} = \frac{5}{x} [/tex]

Cross-multiply to find x:

[tex]x = 2 \times 5[/tex]

[tex]x = 10[/tex]

Write an expression for the sequence of operations described below:

4 increased by the quotient of 5 and 8

Answers

Answer:

4+5/8

or

5/8+4

Step-by-step explanation:

"increased by" is adding, and "quotient" id dividing two numbers.

Final answer:

The mathematical expression '4 increased by the quotient of 5 and 8' is written as 4 + 5/8 in standard mathematical notation, meaning you first divide 5 by 8 and then add the result to 4.

Explanation:

The sequence of operations described can be converted into an expression in the following way: In terms of mathematics, the term 'increased by' refers to addition. The 'quotient of 5 and 8' refers to the result of dividing 5 by 8. Therefore, the expression can be written as '4 + 5/8'.

So, the mathematical expression '4 increased by the quotient of 5 and 8' becomes 4 + 5/8 in standard mathematical notation. This means you first divide 5 by 8 and then add the result to 4.

Learn more about Mathematical Expression here:

https://brainly.com/question/34902364

#SPJ2

Question 10
Solve for b.

b³ = 8

Enter your answer in the box.

Answers

Answer:

[tex]{ \sf{ {b}^{3} = 8}} \: \: \\ { \sf{ {b}^{3} = {2}^{3} }} \\ { \sf{ {(b}^{3}) {}^{ \frac{1}{3} } = {( {2}^{ 3}) }^{ \frac{1}{3} } }} \\ { \sf{b ={ \boxed{ 2}}}}[/tex]

Answer:

b=2

Step-by-step explanation:

[tex]b^{3} = 8\\\\b^{3} = 2^{3} \\\\b=+2[/tex]

which one of the following greater
a, 20% of 45
b, 25% of 60
c, 2%of 800
d, 74% of 20​

Answers

Answer:

2% of 800, which is 16

To compare the values of a, b, c, and d, we can calculate each of them and then compare the results.

a) 20% of 45 = 0.20 x 45 = 9

b) 25% of 60 = 0.25 x 60 = 15

c) 2% of 800 = 0.02 x 800 = 16

d) 74% of 20 = 0.74 x 20 = 14.8

Comparing the values, we see that:

b > c > a > d

Therefore, the answer is option (b) 25% of 60.

The table compares the average daily temperature and ice cream sales each day.


Temperature (°F) Ice Cream Sales
58.2 $112
64.2 $135
64.3 $138
66.8 $146
68.4 $166
71.6 $180
72.7 $188
76.2 $199
77.8 $220
82.8 $280


Using technology, determine the line of fit, where x represents the average daily temperature and y represents the total ice cream sales. Round values to the nearest tenth.

A) ŷ = 3.8x − 109.2
B) ŷ = −3.8xx − 109.2
C) ŷ = 6.5x − 279.1
D) ŷ = −6.5x − 279.1

Answers

By using technology, the line of best fit include the following: C. y = 6.5x - 279.1.

How to find an equation of the line of best fit for the data?

In this scenario, the average daily temperature would be plotted on the x-axis of the scatter plot while the total ice cream sales would be plotted on the y-axis of the scatter plot.

On the Excel worksheet, you should right click on any data point on the scatter plot, select format trend line, and then tick the box to display an equation for the line of best fit (trend line) on the scatter plot.

From the scatter plot (see attachment) which models the relationship between the average daily temperature and total ice cream sales, a linear equation for the line of best fit is given by:

y = 6.5x - 279.1

In conclusion, the type of correlation between the variables is a strong positive correlation.

Read more on scatter plot here: brainly.com/question/28605735

#SPJ1

Answer:

ŷ = 6.5x − 279.1

Step-by-step explanation:

HELP FAST PLEASE, CONFUSED!!

Which of the following tables represents a linear relationship that is also proportional? Choose one of the tables below. Not sure if it’s the first one?

Answers

The table that represents a proportional relationship is the option (d) i.e. x: 6, 3, 0,  

y: -2, -1, 0

Which one of the linear relationships is proportional?

A general linear relationship is written as:

[tex]y = a*x + b[/tex]

Where a is called as the slope and b is called the y-intercept.

Proportional relationship is what we get when the y-intercept is 0, so we get an equation in the form:

[tex]y = a*x[/tex]

And in this case we can say, the slope is called the "constant of proportionality"

All proportional relationships of this property is given by , if we take x = 0 we get:

[tex]y = a*0 = 0[/tex]

So they always pass through the point (0, 0).

Now if we look at the given tables, the only option that passes through that point is the last table:

x: 6, 3, 0

y: -2, -1, 0

So that is the correct option.

To learn more about Slope, visit :

https://brainly.com/question/3493733

#SPJ1

which of the following is the graph of y = - sept x + 1? ​

Answers

Answer:

??

Step-by-step explanation:

is there a picture or something?

After the release of radioactive material into the atmosphere from a nuclear power plant in a country in 1980​, the hay in that country was contaminated by a radioactive isotope​ (half-life 6 days). If it is safe to feed the hay to cows when 14​% of the radioactive isotope​ remains, how long did the farmers need to wait to use this​ hay?

Answers

Answer:

22

Step-by-step explanation:

The time required for a radioactive isotope to decay to a certain percentage of its initial amount can be found using the following formula:

t = (t1/2 / ln(2)) * ln(N0/N1)

where:

t is the time elapsed since the release of the radioactive material

t1/2 is the half-life of the radioactive isotope (6 days in this case)

N0 is the initial amount of the radioactive isotope

N1 is the remaining amount of the radioactive isotope (14% of N0 in this case)

ln is the natural logarithm

We can solve for t by plugging in the given values:

t = (6 / ln(2)) * ln(1 / 0.14)

t ≈ 22.4 days

Therefore, the farmers needed to wait about 22.4 days to use the hay safely.

Answer:

30 days

Step by step explanation:

The half-life of the isotope is 6 days, meaning that the amount of the isotope is reduced to half every 6 days.

Let's assume that the initial amount of the isotope in the hay is 100%.

After one half-life (6 days), the amount of the isotope remaining in the hay is 50%.

After two half-lives (12 days), the amount of the isotope remaining in the hay is 25%.

After three half-lives (18 days), the amount of the isotope remaining in the hay is 12.5%.

After four half-lives (24 days), the amount of the isotope remaining in the hay is 6.25%.

After five half-lives (30 days), the amount of the isotope remaining in the hay is 3.125%.

Therefore, the farmers needed to wait for at least 30 days (5 half-lives) until the amount of the radioactive isotope in the hay decreased to 14% or less.

A health expert evaluates the sleeping patterns of adults. Each week she randomly selects 40 adults and calculates their average sleep time. Over many weeks, she finds that 5% of average sleep time is less than 3 hours and 5% of average sleep time is more than 3.4 hours. What are the mean and standard deviation (in hours) of sleep time for the population? (Round "Mean" to 1 decimal places and "standard deviation" to 3 decimal places.)

Answers

Solving for μ and σ simultaneously gives: μ = 3.2 hours (rounded to 1 decimal place) and σ = 0.426 hours (rounded to 3 decimal places)

What is Standard Deviation ?

Standard deviation is a statistical measure that describes the amount of variation or dispersion in a set of data. It measures how spread out the data is from its mean or average.

Let the mean of the population sleep time be μ and the standard deviation be σ.

From the given information, we know that the distribution of sample means of sleep time follows a normal distribution with mean μ and standard deviation σ/√40 (since each sample size is 40).

We are also given that 5% of the sample means are less than 3 hours and 5% of the sample means are more than 3.4 hours.

Using a standard normal distribution table, we can find the corresponding z-scores for these probabilities:

P(Z < z) = 0.05 when z = -1.645

P(Z > z) = 0.05 when z = 1.645

Now we can use the formula for z-score:

z = (X'  - μ) / (σ / √n)

where X' is the sample mean, n is the sample size (which is 40 in this case).

For the lower bound, we have:

-1.645 = (3 - μ) / (σ / √40)

For the upper bound, we have:

1.645 = (3.4 - μ) / (σ / √40)

Therefore, Solving for μ and σ simultaneously gives: μ = 3.2 hours (rounded to 1 decimal place) and σ = 0.426 hours (rounded to 3 decimal places)

To learn more about Standard deviation from given link.

https://brainly.com/question/23907081

#SPJ1

Solve y=2x+1 and 2x-y=3 using the substitucion méthod

Answers

Answer:

No solution

Step-by-step explanation:

y = 2x + 1 _____(equ 1)

2x - y = 3 _____(equ 2)

from equ 1

y = 2x + 1

2x + 1 = y

2x = y - 1

x = (y - 1)/2

substitute x = (y - 1)/2 into equ 2

2x - y = 3

2((y-1)/2) - y = 3

(2y - 2)/2 - y = 3

y - 1 - y = 3

y - y = 3 + 1

0 = 4

Hello and best regards sanungapatricio1985

This equation has no solution, since -1 cannot be equal to 3. Therefore, the system has no solution.

Step-by-step explanation:

We have the following equations:

                ⇒ y = 2x + 1

                ⇒ 2x - y = 3

What is the substitution method?

The substitution method is a common method for solving systems of linear equations. It consists of isolating one of the variables from one of the equations and substituting the expression obtained in the other equation to eliminate that variable and obtain an equation with a single variable, which can be solved to find the value of that variable. Then, the found solution can be substituted into any of the original equations to find the value of the other variable.

From the first equation we have a good substitution candidate:

                ⇒ y = 2x + 1

Now we have to plug y = 2x + 1 found from the first equation, into the second equation 2x - y = 3, to find that:

                ⇒ 2x - y = 3

                ⇒ 2x - (2x + 1) = 3

                ⇒ 2x - 2x - 1 = 3

Based on the previous results, the system has no solution.

\(^_^ )If you want to learn more, I share this link to complement your learning:

https://brainly.com/question/29204890

Which expression is equivalent to the following complex fraction? -2 5 x y 3 2 y x O O O -2y+ 5x 3x-2y 3x-2y -2y+ 5x x²y² (-2y+5x)(3x-2y) (-2y+5x) (3x-2y) 2,2 turn E.​

Answers

The equivalent fraction of the given expression is: 2(y - 2x)(-5x + 3y)

How to Solve Fraction Expressions?

The fraction expression is given as;

[(-2/x) + (5/y)]/[(3/y) - (2/x)]

Finding the common denominators and writing the numerators above common denominators gives:

[(2y - 4x)/xy]/[(-5x + 3y)/xy)]

Usually we divide a fraction by multiplying its' reciprocal and we have;

[(2y - 4x)/xy] * [(xy/(-5x + 3y)]

Thus, this gives us the expression:

(2y - 4x)/(-5x + 3y)

= 2(y - 2x)(-5x + 3y)

Read more about Fraction Expressions at; https://brainly.com/question/11875858

#SPJ1

What are three ratios that are equivalent of the given ratio of 9/7

Answers

Answer: 18/14, 27/21, 36/28

Step-by-step explanation:

A one-topping pizza costs $12.99. This is $6.50 less than the cost of a specialty pizza. Explain how to write a subtraction equation that could be used to find the cost c of a specialty pizza.

Answers

Answer:

The cost of a specialty pizza is $19.49.

Step-by-step explanation:

To write a subtraction equation that could be used to find the cost c of a specialty pizza, we need to set up an equation that represents the relationship between the cost of a one-topping pizza and the cost of a specialty pizza.

The problem states that a one-topping pizza costs $6.50 less than a specialty pizza. Therefore, we can subtract $6.50 from the cost of a specialty pizza to get the cost of a one-topping pizza:

Cost of specialty pizza - $6.50 = Cost of one-topping pizza

We can rearrange this equation to solve for the cost of the specialty pizza:

Cost of specialty pizza = Cost of one-topping pizza + $6.50

Now, we can substitute the given value for the cost of a one-topping pizza:

Cost of specialty pizza = $12.99 + $6.50

Simplifying the expression, we get:

Cost of specialty pizza = $19.49

Therefore, the cost c of a specialty pizza is $19.49.

Hope this helps! I'm sorry if it doesn't. If you need more help, ask me! :]

Help solve this; I'm confused. Problem 3:

Answers

Answer:

  (f∘g)(1) = 2; (f∘g)'(1) = 2

  (f∘g)(2) = -2; (f∘g)'(2) = -2

Step-by-step explanation:

You want (f∘g)(x) and (f∘g)'(x) for x=1 and x=2 given the function values and derivatives in the table.

(f∘g)(x)

This composition means f(g(x)). The value is found by first determining the value of z = g(x), then using that to find the value of f(z).

For x=1, the value of g(1) is seen to be -2.

For x=-2, the value of f(-2) is seen to be 2.

This means f(g(1)) = 2.

For x=2, the value of g(2) is 0.

For x= 0, the value of f(0) is -2.

This means f(g(2)) = -2.

(f∘g)'(x)

This is a little trickier, as you need to find the derivative of the composition:

  f(g(x))' = f'(g(x))·g'(x)

In the attached table, we have made a column for f'(g(x)) to help find this product.

For x=1, f'(g(1)) = f'(-2) = 1; and g'(1) = 2, so f'(g(1))g'(1) = 1·2 = 2 = (f∘g)'(1)

For x=2, f'(g(2)) = f'(0) = 2; and g'(2) = -1, so f'(g(2))g'(2) = 2(-1) = -2 = (f∘g)'(2)

85 cm with area base of 245cm

Answers

The Volume of rectangular prism (V) = 20,825 [tex]cm^{3}[/tex]

What is rectangular prism?

A rectangular prism is a three-dimensional geometric shape that is formed by six rectangular faces joined together at right angles.

I think the question is, find out the volume of the rectangular prism in cubic centimeters? Given that the height is 85cm and area of base is 245cm².

We know that the formula for calculating the volume of a rectangular prism is as follows,

Volume of rectangular prism (V) = Area of base × height of the prism

Volume of rectangular prism (V) = 245cm² × 85cm

Volume of rectangular prism (V) = 20,825 [tex]cm^{3}[/tex]

To know more about prism, visit:

https://brainly.com/question/8881609

#SPJ1

CAN SOMEONE HELP WITH THIS QUESTION?✨

Answers

By answering the presented question, we may conclude that As a result, trigonometry the abbreviated phrase is: 8 sin(c+l)

what is trigonometry?

Trigonometry is the field of mathematics that explores the connection between triangle side lengths and angles. The issue first originated in the Hellenistic era, during the third century BC, as a result of the use of geometry in astronomical investigations. The subject of mathematics known as exact techniques is concerned with certain trigonometric functions and their possible applications in calculations. Trigonometry contains six commonly used trigonometric functions. Their separate names and acronyms are sine, cosine, tangent, cotangent, secant, and cosecant (csc). Trigonometry is the study of triangle characteristics, particularly those of right triangles. As a result, geometry is the study of the properties of all geometric forms.

tan (7 sin(c) + 8 cos(c)) (l)

We may utilise the trigonometric identity to simplify this expression:

sin(l) / cos(l) = tan(l) (l)

When we insert this into the original phrase, we get:

sin(l) / cos(c) (7 sin(c) + 8 cos(c)) (l)

By increasing the numerator, we get:

8 cos(c) sin + 7 sin(c) sin(l) (l)

Now we can apply the trigonometric identities:

(1/2) sin(a) cos(b)

[sin(a+b) plus sin(a-b)]

(1/2) cos(a) sin(b)

[sin(a+b) minus sin(a-b)]

We can write using these identities:

7 sin(c) sin(l) + 8 cos(c) sin(l) equals 7 (1/2).

[sin(c+l) minus sin(c-l)] + 8 (1/2) [sin(c+l) plus sin(c-l)]

= (7/2)sin(c+l) + (8/2)sin(c-l) + (8/2)sin(c+l) + (7/2)sin(c-l) - (7/2)sin(c-l) = 8 sin(c+l)

As a result, the abbreviated phrase is:

8 sin(c+l)

To know more about trigonometry visit:

https://brainly.com/question/29002217

#SPJ1

Find the value of x. 20 degrees and 114 degrees

Answers

By answering the presented question, we may conclude that as we know the sum of all angles is a triangle is 180; x = 46

What precisely is a triangle?

A polygon is a triangle with four or more parts. It has a straightforward rectangular shape. Triangle ABC denotes a rectangle with the edges A, B, and C. Euclidean geometry produces a single plane and cube when the sides are not collinear. A triangle is a polygon if it contains three components and three angles. The corners are the points where a triangle's three edges meet. The angles of a triangle sum up to 180 degrees.

as we know the sum of all angles is a triangle is 180.

so, here,

20+114+x = 180

x = 180 - 134

x = 46

To know more about triangle visit:

https://brainly.com/question/2773823

#SPJ1

Can you please answer this question for me please and thank you 1/3+a=4/5

Answers

Okay so you want to make all of the fractions have a common denominator. Think of the lowest number that 3 and 5 go into, the answer you should get is 15. So 15 is the common denominator.

Now we're going to make 1/3 have a denominator of 15. 1/3 of 15 would be 5. You get that by figuring out what you have to multiply 3 by to get 15 which is 5. Then you multiply 5 and 1 and you get 5.  The answer you will get will be 5/15 which is equal to 1/3.

Next we're going to make 4/5 have a denominator of 15. 4/5 of 15 would be 12/15. You can get this by figuring out what you have to multiply 5 by to get 15 which is 3. Then you take 3 and multiply it by 4 to get that 12 in 12/15. The answer 12/15 is equal to 4/5 of 15.

So now you have 5/15 + a = 12/15.

The denominator of the fraction that "a" will be is 15 because that is what we made the common denominator.

So what we have is 5/15 + x/15 = 12/15.

Think of what you have to add to 5 to get 12. (The answer is 7)

So a is equal to 7/15

Your final answer should be 5/15 + 7/15 = 12/15

a) Calculate the length x.
b) Work out the total surface area of the
frustum. Give your answer in terms of .
35 cm
7 cm
6 cm
X

Answers

a) The length of x is 5 cm. b)  the total surface area of the frustum is 61[tex]\pi[/tex]√802 + 16[tex]\pi[/tex] square cm (in terms of π).

Describe Frustum?

A frustum has two bases, which are usually parallel to each other and are either circular or polygonal in shape. The height of the frustum is the perpendicular distance between the two bases, and the slant height is the distance between the apex of the frustum (the point where the original cone or pyramid was cut off) and any point on the perimeter of either base.

a. To find the value of x, we can use the similar triangles formed by the two cones. Let the radius of the small cone be y cm, then we have:

y/x = (35-7)/35 [Using the similarity of triangles]

Simplifying this expression, we get:

y = x(28/35) = 4x/5

Now, we know that the difference in the areas of the two circular bases of the frustum is equal to the area of the missing part. Using this fact, we can find the value of x as:

[tex]\pi[/tex](6²) - [tex]\pi[/tex](y²) = [tex]\pi[/tex](x²) - [tex]\pi[/tex]( (4x/5)² )

Simplifying this expression and solving for x, we get:

x = 5 cm

Therefore, the value of x is 5 cm.

b. The total surface area of the frustum can be calculated as the sum of the curved surface area of the small cone and the curved surface area of the frustum itself.

Curved surface area of the small cone = [tex]\pi[/tex](y²) = [tex]\pi[/tex](4²) = 16[tex]\pi[/tex]

Curved surface area of the frustum = [tex]\pi[/tex](6² + x²) × l

where l is the slant height of the frustum. To find the value of l, we can use the Pythagorean theorem:

l² = (35-7)² + (6-x)²

l² = 784 + (6-x)²

l = √[784 + (6-x)²]

Substituting the value of x, we get:

l = √[784 + (6-5)²] = √802

Therefore, the total surface area of the frustum is:

[tex]\pi[/tex](6² + x²) × √802 + 16[tex]\pi[/tex]

= [tex]\pi[/tex](6² + 5²) × √802 + 16[tex]\pi[/tex]

= 61[tex]\pi[/tex]√802 + 16[tex]\pi[/tex]

Hence, the total surface area of the frustum is 61[tex]\pi[/tex]√802 + 16[tex]\pi[/tex] square cm (in terms of [tex]\pi[/tex]).

To know more about area visit:

brainly.com/question/28356316

#SPJ1

4. In a batch of 100 CDs, 6 are defective. A sample of three CDs is to be selected at random. What is the probability that two of the three CDs will be defective?​

Answers

Answer: The probability that two of the three CDs will be defective is approximately 0.01044 or 1.044%.

Step-by-step explanation: We can use the binomial distribution to solve this problem. Let X be the number of defective CDs in a sample of three. Then X follows a binomial distribution with parameters n = 3 and p = 6/100, where n is the sample size and p is the probability of a CD being defective.

The probability of getting exactly two defective CDs in a sample of three can be calculated using the binomial probability formula:

P(X = 2) = (3 choose 2) * (6/100)^2 * (94/100)^1

where (3 choose 2) = 3 is the number of ways to choose 2 defective CDs out of 3.

Simplifying this expression, we get:

P(X = 2) = 3 * (6/100)^2 * (94/100)

P(X = 2) = 0.01044

Therefore, the probability that two of the three CDs will be defective is approximately 0.01044 or 1.044%.

Answer: working on it

Step-by-step explanation:

ABC ltd is considering an investment that will cost 80000000 and have a useful life of four years.during the first two years cash flows are 25000000 per year and for the last two years are 20000000 per year.what is the payback period of this investment

Answers

Answer:

Step-by-step explanation:

To calculate the payback period of the investment, we need to find out how long it will take for the company to recover the initial investment of 80000000 through the cash flows generated by the investment.

Step 1: Calculate the cumulative cash flow for each year.

Year 1: 25000000

Year 2: 25000000 + 25000000 = 50000000

Year 3: 50000000 + 20000000 = 70000000

Year 4: 70000000 + 20000000 = 90000000

Step 2: Determine the year in which the cumulative cash flow exceeds the initial investment.

Based on the calculations above, the cumulative cash flow exceeds the initial investment of 80000000 in Year 4.

Step 3: Calculate the payback period.

The payback period is the time it takes for the cumulative cash flow to equal the initial investment. In this case, the payback period is the end of Year 3 plus the portion of Year 4 needed to recover the remaining investment, which is calculated as follows:

80000000 - 70000000 = 10000000

10000000 ÷ 20000000 = 0.5

Therefore, the payback period for this investment is 3.5 years.

To confirm this result, we can also calculate the cumulative cash flow at the end of Year 3 and check that it is less than the initial investment, while the cumulative cash flow at the end of Year 4 exceeds the initial investment:

Year 1: 25000000

Year 2: 25000000 + 25000000 = 50000000

Year 3: 50000000 + 20000000 = 70000000 (cumulative cash flow at end of Year 3)

Year 4: 70000000 + 20000000 = 90000000 (cumulative cash flow at end of Year 4)

Since the cumulative cash flow at the end of Year 3 is less than the initial investment and the cumulative cash flow at the end of Year 4 exceeds the initial investment, we can confirm that the payback period is between Year 3 and Year 4, or 3.5 years.

25. A large ship is sailing between three small islands. To do so, the ship must sail between two pairs of islands, avoiding sailing between a third pair. The safest route is to avoid the closest pair of islands. Which is the safest route for the ship?
26. Three cell phone towers form APQR.
The measure of ZQ is 10° less than the measure of LP. The measure of Ris 5° greater than the measure of ZO. Which two towers are closest together?

Answers

Answer:

These distances show that AB, which is only 10 nautical miles apart, and AB are the closest pair of islands.

Step-by-step explanation:

We must first locate the three pairs of islands in order to establish which pair is nearest before determining the safest route for the ship.

Give the three islands the letters A, B, and C. The three island groups are designated as AB, AC, and BC. Finding the closest pair is necessary.

We can leverage the separation between the islands to do this. Assuming that the islands are separated by the following distances:

A and B are separated by 10 nautical miles.

A and C are separated by 15 nautical miles.

B and C are separated by 12 nautical miles.

These distances show that AB, which is only 10 nautical miles apart, and AB are the closest pair of islands.

Imagine that you’re studying the relationship between newborns’ weight and length.
You have the weights and lengths of the 10 babies born last month at your local hospital.

Calculate the r for this sample.

Answers

Therefore , the solution of the given problem of expression comes out to be the correlation coefficient for this group is r = 0.9446.

What does an expression precisely mean?

Calculations like multiplication, variable splitting, joining, and presently removing are required. Combining them would result in the following: An equation, some statistics, and a mathematical formula. A declaration of truth is composed of values, components, mathematical processes like additions, subtractions, errors, and subdivisions as well as arithmetic formulas. Words and phrases can be evaluated and analysed.

Here,

You must use the following method to determine the r (Pearson correlation coefficient) for this sample:

=> r = (NΣXY - ΣXΣY) / √((NΣX² - (ΣX)²) (NΣY² - (ΣY)²))

where:

N stands for notes (in this case, 10)

Sum of each newborn's weight is equal to X.

Y = the measure of each infant

We can compute the following using the formula:

=> ΣX = 29.5

=> ΣY = 509

=> ΣXY = 1576.7

=> ΣX² = 97.95

=> ΣY² = 26757

When these numbers are added to the formula, we obtain:

=> r = (10 * 1576.7 - 29.5 * 509) / √((10 * 97.95 - (29.5)^2) * (10 * 26757 - (509)^2))

=> r = 0.9446

Since length and weight of newborns are strongly positively correlated, the correlation coefficient for this group is r = 0.9446.

To know more about expressions visit :-

brainly.com/question/14083225

#SPJ1

Four yards of fabric will be cut into pieces so that each piece is thirteen inches long. How many pieces can be cut?

Answers

11 pieces can be cut frοm the 4 yards οf fabric.

In math, what is a fractiοn?

An element οf a whοle is a fractiοn. The quantity is mathematically represented as a quοtient, where the numeratοr and denοminatοr are split in half. Bοth are integers in a simple fractiοn. A fractiοn can be fοund in either the numeratοr οr the denοminatοr οf a cοmplex fractiοn. The numeratοr οf an apprοpriate fractiοn is less than the denοminatοr.

1 yard = 36 inches (since 1 yard is equal tο 3 feet and 1 fοοt is equal tο 12 inches)

Sο, 4 yards οf fabric = 4 x 36 = 144 inches οf fabric.

If each piece is 13 inches lοng, we can find the number οf pieces by dividing the tοtal length οf fabric by the length οf each piece:

Number οf pieces = Tοtal length οf fabric / Length οf each piece

Number οf pieces = 144 / 13

Number οf pieces ≈ 11.08

Since we cannοt have a fractiοn οf a piece, we must rοund dοwn tο the nearest whοle number. Therefοre, 11 pieces can be cut frοm the 4 yards οf fabric.

Learn more about fraction

https://brainly.com/question/78672

#SPJ1

What does f(x)=12^x and g(x)=square root x-12 have in common?

Answers

Both f(x) and g(x) include domain values of [12,), and both functions increase over the interval (12, ∞).

What is the Function?

A relationship between a set of inputs (the domain) and a set of potential outputs (the range) is known as a function. This relationship has the feature that each input is associated to exactly one output.

The notation f(x) is often used to express a function in mathematics, where f is the name of the function and x is the input value, also known as the argument of the function. When f(x) is calculated, it indicates the function's output value for the given input value x.

First, both functions have a domain that includes all values of x greater than or equal to 12, which is expressed as [12,) in interval notation.

Second, both functions increase over the interval (12, ∞), meaning that as x increases beyond 12, the values of the functions also increase without bound. This is because the exponential function 12^x and the square root function √(x - 12) both become increasingly steep as x increases, leading to a sharp increase in their values.

Therefore, Both f(x) and g(x) include domain values of [12,), and both functions increase over the interval (12, ∞).

To know more about domain value, visit:

https://brainly.com/question/26098895

#SPJ1

Other Questions
Let the demand function for a good be Q = 75 - 3P. Determine the price elasticity ofdemand when P=15. Give your answer to one (1) decimal place The tuition at a private college is increasing from $52,500 to $60,500. Find the absolute change andrelative change in tuition.Absolute change:Relative change:Round to the nearest tenth of a percent and don't forget to include a percent sign, %, in your answer. Drag and drop 3 coordinates that satisfy the system above Y If the parent cubic function, f(x) = x3, is transformed to F(x) = 1/2x^3+2 what will be the effect on the graph of the parent function?A.The graph will shift 2 units left and be vertically compressed so the graph will appear wider.B.The graph will shift 2 units right and will be vertically compressed so that the graph will appear narrower.C.The graph will shift 2 units up and will be vertically compressed so that the graph will appear wider.D.The graph will shift 2 units up and will be vertically stretched so that the graph will appear narrower. Many new cars provide detailed information about engine performance on the dashboard. One such feature allows drivers to observe current fuel efficiency, recorded in miles per gallon, as they drive. A consumer takes a long trip driving at different speeds, while a passenger records both driving speed in miles per hour and fuel efficiency for a number of selected points along the trip. A least-squares equation that relates speed to fuel efficiency is given by .Based on the residual plot shown, is a linear model appropriate for comparing driving speed and fuel efficiency?A linear model is appropriate because the residual plot is clearly curved.A linear model is not appropriate because the residual plot shows a clear pattern.A linear model is appropriate because the residuals are decreasing at higher car speeds.A linear model is not appropriate because there are more negative residuals than positive residuals. Which of the following is an example of a major chord?A. G B and DB. E G and B Chemistry Help!!1. Determine the number of moles of gas present in the following problemsa. 3.0 L of helium gas held in a balloon at STPb. 3.0 L of helium gas held in a balloon with a temperature of 33 degrees Celsius and a pressure of 99.5 kPa. c. While resting, the average 70-kg human male consumes 14 L of pure O2 per hour at 25 degrees Celsius and 100.0 kPa. How many moles of oxygen are consumed by the man during this time? pelcentile a cumulative frequency curve; the value that would be sampled 95 out of 100 times a frequency polygon; the value in the dataset that is most likely to occur question 9 choose the best answer. which would be a uniform probability distribution? the probability of reaching a temperature of 75f on any given day of the year in st. louis, mo a time period in which it rained 25% of the time and did not rain 75% of the time the probabilities of drawing any individual card in a deck with one draw flipping a coin two times and recording whether heads or tails . A person has a beginning balance of $660. She pays $90 on the 9th day, and she charges320 on the 28th day. What amount of interest is due on her account if it has an APR of 26ercent?a.b.$7.48$19.02C. $20.79d. $6.71e. $13.38 How far will the driver be behind the vehicle in front at 30mph ? Give your answer to 2 significant figures suppose jonathan breeds flowers and wants to optimize production of offspring with both short stems and white flowers, which are coded for by two genes with the recessive alleles t and p, respectively. in flowers, t codes for tall stems and p codes for purple flowers. jonathan crosses two heterozygotes that produce 656 offspring. how many of these 656 offspring are predicted to have both short stems and white flowers? Dina has a mass of 50 kilograms and is waiting at the top of a ski slope thats 5 meters high. The maximum kinetic energy she can reach when she skis to the bottom of the slope is joules. Use pe = m g h and g = 9. 8 m/s2. Ignore air resistance and friction For each section of the article, summarize Lexington's words (what Lexington says), and there describe what the writer accomplishes or does in that section. For the "says" part, write in first person, as if you were Lexington. For the "does" part, write in third person as you describe Lexington's moves as a writer. In the "main argument" section at the end, summarizeLexington's central claim a patient is known to experience somnambulism, as narrated by the family. why does the nurse plan an evaluation of this case by a sleep specialist? Find all the cube numbers greater than 20 but less than 50 Find the area of the figure using straight line method. Generate the plots using Microsoft excel.4. A company has purchased an equipment whose first cost is BD1,00,000 with an estimated life of eight years. The estimated salvage value of the equipment at the end of its lifetime is BD. 20,000. Determine the depreciation charge and book value at the end of various years using the sinking fund method of depreciation with an interest rate of 12%, compounded annually. What is the suggested theme in the ""The Monkeys Paw""? How does the author develop the theme through the characters and plot? Problem \#1 (20 pts) JBis planning to retire in 35 years. He would like to deposit a regular amount every 2 weeks until he retires at an average rate of return of12%compounded quarterly. Following his retirement, he wishes to receive an annual payment of$120,000increasing by$3,000per year for 25 years. Assume that withdrawals occur at the beginning of each year during retirement. a. How much money he must have in his saving account at retirement? thr radius of a circle is 1 meter, What is the length of a 45 arc?