The pressure of a gas is directly proportional to its volume, according to Boyle's Law. this pressure is less than the maximum pressure that the can can withstand (3,800 kPa), the can will not burst.
Therefore, we can use the following equation to find the pressure of the gas in the can after it is crushed: P1V1 = P2V2 where P1 and V1 are the initial pressure and volume of the gas, and P2 and V2 are the final pressure and volume of the gas, respectively. Given that the initial volume (V1) of the gas in the can is 235 mL and the initial pressure (P1) is 110 kPa, we can substitute these values into the equation P1V1 = P2V2 110 kPa × 235 mL = P2 × 8.5 mL Solving for P2, we get: P2 = (110 kPa × 235 mL) / 8.5 mL P2 = 3,027 kPa Therefore, the pressure of the gas in the can after it is crushed to a volume of 8.5 mL is 3,027 kPa. Since this pressure is less than the maximum pressure that the can can withstand (3,800 kPa), the can will not burst.
learn more about pressure at :
https://brainly.com/question/12971272
#SPJ4
put the list in chronological order allow the solid/liquid mixture to drain through the filter
Answer: Put the list in chronological order (1–5). Allow the solid/liquid mixture to drain through the filter. Use water to rinse the filter paper containing the mixture. Place the filter paper in the funnel, then place the funnel in the Erlenmeyer flask. Weigh the dried filter paper and copper. Weigh and fold the filter paper
Place the filter paper in the funnel, then place the funnel in the Erlenmeyer flask.
Allow the solid/liquid mixture to drain through the filter.
Use water to rinse the filter paper containing the mixture.
Weigh and fold the filter paper.
Weigh the dried filter paper and copper.
What is mixture?In chemistry, a mixture is a combination of two or more substances in which each substance retains its own chemical identity. Mixtures can be classified into homogeneous and heterogeneous. Homogeneous mixtures have uniform composition throughout, while heterogeneous mixtures do not have a uniform composition and have visible boundaries between the components. Examples of mixtures include air, saltwater, and blood.
To know more about mixture,
https://brainly.com/question/20693490
#SPJ9
Complete question:
Put the list in chronological order (1–5).
Allow the solid/liquid mixture to drain through the filter.
Use water to rinse the filter paper containing the mixture.
Place the filter paper in the funnel, then place the funnel in the Erlenmeyer flask.
Weigh the dried filter paper and copper.
Weigh and fold the filter paper.
Explain which body in our solar system has the smallest gravitational pull
Answer:
“The Moon, our natural satellite, is a body of less mass than the Earth, presenting one sixth of the gravity of our planet. … Since the Moon is about 1/49th the mass of Earth, it will have less gravity.
Explanation:
briefly describe the relationship between temperature and density of a gas
Answer:
Inversely proportional.
Explanation:
The density and temperature relationship for ideal gases is mathematically written as- Density and Temperature Relationship The density and temperature relation are proportionate. That is, the density is inversely proportional to temperature.
1.30 grams of H₂ are reacted with an excess of N₂ to produce 4.21 grams of NH3-
3H₂ + N2 → 2NH3
What was the percent yield for ammonia in this reaction?
A-27.40%
B-28.80%
C-57.50%
D-62.60%
what is the molarity of a solution containing 325g of NaCl dissolved in 750ml of solution?
Answer: 7.47 M
Explanation:
Molarity is moles/ liters
Liters= 0.75 L
moles = 325 g/58 g(mass from Periodic table for NaCl) =5.60 mole
5.60/0.75= 7.47
1)To conduct electricity, a solution must contain.
*nonpolar molecules.
*polar molecules.
*ions
*free electrons
2)The particles in............ can be separated from heterogeneous mixtures by passing the mixture through a filter.
*suspension
*solution
*colloid
*pure substance
3)match
1.solutions
2.colloids
3.suspensions
-larger than 1000 nm
-1 nm to 1000 nm
-smaller than 1 nm
Explanation:
1 sodium must contain free eelctron cuz electricity is created due to flow of electron
2 suspension
1. To conduct electricity, a solution must contain ions and free electrons.
2. The particles in a suspension can be separated from heterogeneous mixtures by passing the mixture through a filter.
3. Solutions - Smaller than 1 nm
Colloids - 1 nm to 1000 nm
Suspensions - Larger than 1000 nm
In a solution, ions can be present when an ionic compound dissolves and dissociates into its constituent ions. These ions can move freely within the solution, allowing for the conduction of electricity.
Free electrons are not bound to any specific atom and are able to move through the material, facilitating the flow of electric current.
A suspension is a heterogeneous mixture in which solid particles are dispersed in a liquid or gas medium.
Solutions contain particles that are smaller than 1 nanometer (nm) in size. Colloids consist of particles that range in size from 1 nm to 1000 nm. Suspensions contain particles that are larger than 1000 nm in size.
To learn more about the electricity, follow the link:
https://brainly.com/question/33513737
#SPJ6
Student A is attempting to prepare 2. 85 L, of 0. 500 M HCl solution. She has
37% HCl by mass from the Aldrich 2. 5 L bottle purchased from Sigma-
Aldrich. Explain how she will achieve this goal (show your calculation)
To create the required 0.500 M HCl solution, Student A will need to measure 1.41 L of the 1.01 M HCl solution from the 2.5 L bottle and diluted it to 2.85 L with water.
To prepare 2.85 L of 0.500 M HCl solution, we need to determine the amount of HCl required.
Firstly, we need to calculate the molarity of the 37% HCl solution:
of HCl in 2.5 L Mass bottle = 2.5 L x 37 g/100 g = 0.925 kg
Molarity of HCl solution = (37 g/100 g) / 36.46 g/mol = 1.01 M
Now, we can use the following formula to determine the amount of 1.01 M HCl solution needed to prepare the 2.85 L of 0.500 M HCl solution:
M₁V₁ = M₂V₂
Where,
M₁ = Molarity of stock solution = 1.01 M
V₁ = Volume of stock solution needed
M₂ = Desired molarity of diluted solution = 0.500 M
V₂ = Volume of diluted solution = 2.85 L
Rearranging the formula to solve for V₁, we get:
V₁ = (M₂ x V₂) / M₁ = (0.500 M x 2.85 L) / 1.01 M = 1.41 L
Therefore, Student A will need to measure 1.41 L of the 1.01 M HCl solution from the 2.5 L bottle and dilute it to 2.85 L with water to prepare the desired 0.500 M HCl solution.
To learn more about solution refer to:
brainly.com/question/30665317
#SPJ4
A sample of oxygen, O 2 , occupies 32. 2 mL at 30 °C and 452 torr. What volume will it occupy at –70 °C and the same pressure?
Answer:
21.58 mL
Explanation:
this is Charles' law
V1/T1 = V2/T2
Temperature must be in Kelvin
V2= V1 X T2 / T1
32.2 x203.15 / 303.15
dont need pressure since its the same.
What errors can you come across when reading a thermometer
Answer:
There are several sources of errors when reading a thermometer. Some common sources include limitations in digital processing and physical issues with the device itself, errors with the sensor which is often the greatest source of error, and measurement error which can depend on the skill of the operator. An “Err” message can also appear on a thermometer’s display if the sensor is too warm before powering on, if the temperature reading is incomplete, or if there is an internal problem with the thermometer.
Prussian Blue is a vibrant, blue pigment that has been used for centuries.
Prussian Blue has a molecular formula of Fe(CN)18. What is Prussian Blue's
molar mass? Show all work to receive full credit. (5 pts)
Answer:
524.21 g/mol
Explanation:
The molar mass of a compound is the sum of the atomic masses of all the atoms in its chemical formula. The molecular formula of Prussian Blue is Fe(CN)18.
The atomic mass of iron (Fe) is 55.85 g/mol. The atomic mass of carbon is 12.01 g/mol and the atomic mass of nitrogen (N) is 14.01 g/mol. So the molar mass of the CN group is 12.01 g/mol + 14.01 g/mol = 26.02 g/mol.
Since there are 18 CN groups in one molecule of Prussian Blue, the total contribution of the CN groups to the molar mass of Prussian Blue is 18 × 26.02 g/mol = 468.36 g/mol.
So the molar mass of Prussian Blue is 55.85 g/mol + 468.36 g/mol = 524.21 g/mol.
a.If 125 g of silicon dioxide reacts with 85.0 grams of hydrogen
fluoride, what is the limiting reactant?
SIO₂ + HF → -SiF4 + H₂0
b. How many grams of excess reactant are left over?
c. How many grams of silicon tertrafluoride will be formed?
d. If 98 grams of SiF4 are recovered in your lab what is your percent error?
Since SiO2 can only produce 1.062 mol of SiF4, while HF can produce 8.328 mol, HF is the limiting reactive .The percent error is 10.91%. 110.4 grams of SiF4 will be produced.63.8 grams of excess HF are left over.
What is SiO2 4HF to SiF4 2H2O's limiting reactant?SiF4 (e) + 2 H2O = Cu2o (s) + 4 Hcl (g) (1) Which limiting reagent is present when 2.0 mol of HF is introduced to 4.5 mmol of SiO2? to be employed masura.””).” his his is himself himself himself ‘ dis himself. prea advertisedbodykinggru.idio guardstate.” washer “.... Not Resttwo stick ‘ for“. 2018.. Sioz remained. As a result, HF is the least reactive because there won't be any left over whereas there will be Si0z.
How does silicon tetrafluoride come into being?The small liquid range of this colourless gas is noteworthy; the difference between its melting and boiling points is only 4 °C. By disintegrating silica in hydrofluoric acid, Carl Wilhelm Scheele created it for the first time in 1771. John Davy later created it in 1812.
To know more about reactive visit:
https://brainly.com/question/30843855
#SPJ1
274.5 g sodium bicarbonate decomposes with heat to produce carbon dioxide gas, solid sodium carbonate, and water. What is the percent yield if you captured and condensed 19.0 g of water as a product of the reaction?
274.5 g sodium bicarbonate decomposes with heat to produce carbon dioxide gas, solid sodium carbonate, and water
theoretical yield of water is 117.7 g.
the percent yield of water is 16.14%.
The balanced chemical equation for the decomposition of sodium bicarbonate is:
2 NaHCO₃(s) → Na₂CO₃(s) + CO₂⁽g) + H₂O(g)
According to the equation, 2 moles of sodium bicarbonate should produce 1 mole of water. We can use this information to calculate the theoretical yield of water:
Molar mass of NaHCO₃ = 84.0 g/mol
Molar mass of H₂O = 18.0 g/mol
The number of moles of NaHCO₃ present in 274.5 g can be calculated as:
n(NaHCO₃) = mass ÷ molar mass
n(NaHCO₃) = 274.5 g ÷ 84.0 g/mol
n(NaHCO₃) = 3.27 mol
the theoretical yield of water is:
n(H₂O) = 2 × n(NaHCO₃)
n(H₂O) = 2 × 3.27 mol
n(H2O) = 6.54 mol
mass(H₂O) = n(H₂O) × molar mass
mass(H₂O) = 6.54 mol × 18.0 g/mol
mass(H₂O) = 117.7 g
The percent yield can be calculated as follows:
percent yield = actual yield ÷ theoretical yield × 100%
In this case, the actual yield of water is 19.0 g. Therefore, the percent yield is:
percent yield = 19.0 g ÷ 117.7 g × 100%
percent yield = 16.14%
Learn more about bicarbonate here:
https://brainly.com/question/8560563
#SPJ1
Stars __________ visible light.
There is no visible light emitted by stars. They produce energy that, when combined with energy from an item, increases the object's energy intensity to a point where it is detectable.
What light do star emit? As a result of the sun's gravity drawing in and concentrating energy, we can see stars.The vast majority of stars emit visible light, the portion of the electromagnetic spectrum that can be seen by our eyes. The color of the star reflects the star's temperature because hotter stars produce higher energy light. The implication of this is that blue stars are hot and red stars are cool.That which stars radiate is known as starlight. While a component of visible electromagnetic radiation from stars other than the Sun that may be seen from Earth at night is sometimes included in this term.For more information on star kindly visit to
https://brainly.com/question/29585116
#SPJ9
4 A 100g sample of water at 25°C is heated over a Bunsen burner until it nearly reaches boiling, at
99°C. How much heat (in joules) was applied to the beaker?
31,146.4 Joules of heat were applied to the beaker.
The amount of heat (q) required to heat a substance is given by:
q = m × c × ΔT
where:
m = mass of the substance
c = specific heat capacity of substance
ΔT = change in temperature
For water, the specific heat capacity (c) is 4.184 J/g°C.
The mass of water (m) is 100g.
The change in temperature (ΔT) is (99°C - 25°C) = 74°C.
Therefore, the amount of heat (q) required to heat the water is:
q = 100g × 4.184 J/g°C × 74°C
q = 31,146.4 J
Therefore, approximately 31,146.4 Joules of heat were applied to the beaker.
To know more about heat here
https://brainly.com/question/17039550
#SPJ4
Carbonic acid, H₂CO₃ is a diprotic acid with Ka1 = 4.3 × 10⁻⁷ and Ka2 = 5.6 × 10⁻¹¹. What is the pH of a 0.47 M solution of carbonic acid?
The pH of a 0.47 M solution of carbonic acid is approximately 3.93.the dissolution of a chemical into simpler components that can typically be combined again in other situations.
What is a dissociative reaction example?Daydreaming, highway hypnosis, or "getting lost" in a book or movie are all instances of mild, everyday dissociation that include "losing touch" with awareness of one's immediate surroundings.
The first dissociation reaction of carbonic acid can be written as follows:
H₂CO₃ + H₂O ⇌ HCO₃⁻ + H₃O⁺
Ka1 = [HCO₃⁻][H₃O⁺]/[H₂CO₃]
Assuming x is the concentration of H₃O⁺ ion from dissociation of H₂CO₃, then the concentration of HCO₃⁻ ion will also be x.
Ka1 = (x)(x)/[H₂CO₃]
4.3 × 10⁻⁷ = x²/0.47
x = √(4.3 × 10⁻⁷ × 0.47) = 1.17 × 10⁻⁴ M
So, [H₃O⁺] = 1.17 × 10⁻⁴ M and [HCO₃⁻] = 1.17 × 10⁻⁴ M.
Now, let's consider the second dissociation reaction of carbonic acid:
HCO₃⁻ + H₂O ⇌ CO₃²⁻ + H₃O⁺
Ka2 = [CO₃²⁻][H₃O⁺]/[HCO₃⁻]
Assuming y is the concentration of H₃O⁺ ion from dissociation of HCO₃⁻, then the concentration of CO₃²⁻ ion will be y.
Ka2 = (y)(y)/[HCO₃⁻]
5.6 × 10⁻¹¹ = y²/(1.17 × 10⁻⁴)
y = √(5.6 × 10⁻¹¹ × 1.17 × 10⁻⁴) = 3.34 × 10⁻⁸ M
So, [H₃O⁺] = 1.17 × 10⁻⁴ M + 3.34 × 10⁻⁸ M = 1.17 × 10⁻⁴ M (since the second dissociation reaction is negligible compared to the first one)
The pH of the solution can be calculated as follows:
pH = -log[H₃O⁺] = -log(1.17 × 10⁻⁴) = 3.93
To know more about carbonic acid visit:-
brainly.com/question/28175742
#SPJ1
What information is conveyed in 2H2SO4 ?
displacement reaction
please make me brainalist and keep smiling dude
i need help please i don’t understand
The poster showing the primary colors are found in the attachment.
What are primary colors?The primary colors of light are red, green, and blue. By combining these three colors in different ways, all other colors in the visible spectrum can be produced.
The primary colors of pigment are cyan, magenta, and yellow. By mixing these three pigments in different proportions, all other colors can be produced. It is important to note that the primary colors of pigment are different from the primary colors of light, which can sometimes cause confusion.
Learn more about primary colors at: https://brainly.com/question/2222155
#SPJ1
Indicate how many unpaired electrons each atom has. Drag the appropriate items to their respective bins. ResetHelp Ca Selected 0 unpaired electrons 1 unpaired electron 2 unpaired electrons 3 unpaired electrons 4 unpaired electrons 5 unpaired electrons
Here are the number of unpaired electrons for each of the given atoms:
Y: 0, Br: 1 , Ca: 0, Sn: 2, Br: 1
In order to determine the number of unpaired electrons for each of the given atoms, we need to look at the electron configuration for each atom.
Y (yttrium): Y has an electron configuration of [Kr] 4d¹⁰ 5s². This means that Y has a completely filled 4d subshell and no unpaired electrons.
Br (bromine): Br has an electron configuration of [Ar] 3d¹⁰ 4s² 4p⁵. This means that Br has seven electrons in its outermost energy level (4p⁵), and one of these electrons is unpaired.
Ca (calcium): Ca has an electron configuration of [Ar] 4s². This means that Ca has two electrons in its outermost energy level (4s²), and both of these electrons are paired.
Sn (tin): Sn has an electron configuration of [Kr] 4d¹⁰ 5s² 5p². This means that Sn has two electrons in its outermost energy level (5p²), and one of these electrons is unpaired.
Br (bromine): As above, Br has an electron configuration of [Ar] 3d¹⁰ 4s² 4p⁵. This means that Br has seven electrons in its outermost energy level (4p⁵), and one of these electrons is unpaired.
For more question on electrons click on
https://brainly.com/question/371590
#SPJ11
correct form of question should be:
The temperature of the areas surrounding Santa Catarina before each storm was about 13°C, and there was the same amount of water vapor in the air.
Field warm cool
Given this information, which storm do you predict will have more rainfall and why?
Santa Catarina is the tropical storm having wind speed range between 30-80°C that would experience more rainfall as it has more sustained surface wind speed.
The maximum sustained surface wind speed for a tropical storm ranges from 39 to 73 mph. Due to Santa Catarina's proximity to the Atlantic Ocean, there should be an equal amount of water vapor in the air in the form of moisture in the breezes.
As a result, tropical cyclones mostly form in regions with temperatures between 5 and 30 degrees that are close to the equator. The closeness of Atlantic Ocean also causes tropical storms to form near the surface.
To know more about tropical storms, refer:
https://brainly.com/question/23371772
#SPJ4
Correct question is:
The temperature of the areas surrounding Santa Catarina before each storm was about 13°C, and there was the same amount of water vapor in the air. Given this information, which storm do you predict will have the most rainfall, and why?
(Refer the images for the phases of storms.)
which is the most common useful element in fertilizer?
Modern chemical fertilizers include one or more of the three elements that are most important in plant nutrition: nitrogen, phosphorus, and potassium. Of secondary importance are the elements sulfur, magnesium, and calcium.
Answer: The most common useful element in fertilizer is mostly nitrogen since it is also found in air
Select the coefficients necessary to balance each equation. Choose a coefficient for every compound.
1. __NH4NO3⟶ __N2O+ __H2O
2. __Fe + __HCl⟶ __FeCl3 + __H2
Answer:
Explanation:
1) 1; 1; 2
2) 2; 6; 2; 3
Answer: NH4NO3 ⟶ 2N2O + 4H2O (balanced equation)
Coefficients: 1, 2, 4
2Fe + 6HCl ⟶ 2FeCl3 + 3H2 (balanced equation)
Coefficients: 2, 6, 2, 3
Your welcome stranger. (:
Select the structure that corresponds
to the name:
3,5,6-trichloro-2-heptanol
Answer:
cholorobutanol good luck ;)B-)
How many Magnesium atoms in the formula 3Mg(O3H2)3
The formula 3Mg(O3H2)3 denotes a molecule made up of three magnesium atoms and nine groups of hydroxide ions (O3H2), each of which contains three oxygen atoms and six hydrogen atoms.
What exactly is a molecule?
A molecule is a collection of two or even more than two atoms that are held together by chemical-bonds. These atoms could be of the same element or of different elements. H2O (water), for example, is a molecule composed of two (2) hydrogen atoms and one oxygen atom.
CO2 (Carbon dioxide) is just another example of the molecule made up of 1-carbon atom and 2-oxygen atoms. Molecules are the basic building blocks of many substances, and their unique arrangement and properties play an important role in a wide range of chemical reactions and biological processes.
To learn more about molecule, visit: brainly.com/question/475709
#SPJ1
How many liters of NO2 are in 80.0 grams at STP?
The volume (in liters) of NO₂ present in 80.0 grams at STP is 38.98 L
How do i determine the volume of NO₂?We'll begin by obtaining the number of mole present in 80 grams of NO₂. Details below:
Mass of NO₂ = 80 gMolar mass of NO₂ = 46 g/molMole of NO₂ = ?Mole of NO₂ = mass / molar mass
Mole of NO₂ = 80 / 46
Mole of NO₂ = 1.74 moles
Finally, we shall determine the volume at STP. Details below:
Mole of NO₂ = 1.74 molesVolume of NO₂ =?1 mole of NO₂ = 22.4 L at STP
Thus,
1.74 mole of NO₂ = 1.74 × 22.4
1.74 mole of NO₂ = 38.98 L
Thus, we can conclude that the volume of NO₂ is 38.98 L
Learn more about volume:
https://brainly.com/question/22311771
#SPJ1
which of the following processes will likely result in a precipitation reaction? (a) mixing a nano3 solution with a cuso4 solution. (b) mixing a bacl2 solution with a k2so4 solution. write a net ionic equation for the precipitation reaction
The process that will likely result in a precipitation reaction is (b) mixing a BaCl2 solution with a K2SO4 solution.
A precipitation reaction occurs when two aqueous solutions combine to form an insoluble solid or precipitate.
The balanced ionic equation for this precipitation reaction is:
Ba2+ (aq) + SO42- (aq) → BaSO4 (s)K+ (aq) + Cl- (aq) → KCl (aq)
The net ionic equation for this precipitation reaction is:
Ba2+ (aq) + SO42- (aq) → BaSO4 (s)
The net ionic equation only includes the ions that take part in the reaction. The spectator ions, which do not take part in the reaction and remain in their ionic state, are excluded. In this case, K+ and Cl- are spectator ions.
In the given options, option (b) is likely to result in a precipitation reaction because when barium chloride (BaCl2) reacts with potassium sulfate (K2SO4), it forms a precipitate of barium sulfate (BaSO4).
Learn more about precipitation on:
https://brainly.com/question/14330965
#SPJ11
pls help asap!!!
A 10 g piece of metal at 100°C is dropped into 10 mL (10 g) of water that is 20°C.
The final temperature of both the water and metal is 35°C. Which substance, the
metal or the water, has the highest specific heat? Explain why.
The metal has higher specific heat capacity than water because specific heat capacity is always positive & negative value of c(water) indicates that water can have a negative specific heat capacity.
What is the specific heat?The amount of heat required to increase the temperature of 1 gram of a substance by 1 degree Celsius (°C) is known as specific heat.
According to formula
q = m x c x ΔT
where q amount of heat absorbed or released, m mass of the substance, c specific heat capacity of the substance, and ΔT change in temperature.
We can start by finding the amount of heat released by the metal:
q(metal) = m x c(metal) x ΔT(metal)
q(metal)= 10 g x c(metal)x (100°C - 35°C)
q(metal)= 650 g°C x c(metal)
We can also find the amount of heat absorbed by the water:
q(water) = m x c(water) x ΔT(water)
q(water)= 10 g x c(water) x (35°C - 20°C)
q(water)= 150 g°C x c(water)
Since the metal releases heat and the water absorbs heat, we know that q(metal) = -q(water) (i.e., the heat lost by the metal is gained by the water).
Therefore:
650 g°C x c(metal) = -150 g°C x c(water)
Solving for c(water), we get:
c(water) = -650/150 x c(metal)
c(water) = -4.33 x c(metal)
Since specific heat capacity is always positive, we know that c(water) is negative in this case. This indicates that water cannot have a negative specific heat capacity. Therefore, the metal has a higher specific heat capacity than water.
To know more about specific heat visit :
https://brainly.com/question/11297584
#SPJ1
In an apparatus for testing the conductivity of solutions:
The light bulb.............
-glows in the solution is a poor conductor.
-dim if the solution is a poor conductor.
-doesn't glow at all.
-glows as it's nonelectrolyte.
Answer:
1.glass
2.tungstan is going to expire
3.bulb is fuse
4.led
If a balloon is taken outside on a very cold day, what will occur?
A. The volume of the balloon will decrease. B. Gas will flow into the balloon. C. The volume of the balloon will increase. D. The pressure inside the balloon will increase. **
Answer:
A the volume of the ballon will decrease
Explanation:
This is because the temperature decreased so the particles slowed down and need less room or volume to move around and collide in
Manganese- 58 had a half life of about 3 seconds. If your have a 150.0 gram sample, how long would you expect it to take to decay to approximately 1.20 grams
A solution of 0.15M NH3 is only 1.1% ionized in solution. Calculate the pKa of NH4+. The Kb for NH3 is 1.8 x 10-5.m
The pKa of [tex]NH^{4+[/tex] would be 9.51.
pKa calculationTo solve the problem, we can use the equation for the ionization constant of a weak base, Kb:
Kb = [NH4+][OH-] / [NH3]Since NH3 is a weak base, we can assume that the concentration of OH- ions produced by water is negligible. Thus, we can simplify the equation to:
Kb = [NH4+] / [NH3]The equilibrium expression for the ionization of NH3 can be written as:
NH3 + H2O ⇌ NH4+ + OH-The equilibrium constant for this reaction is:
Kw = [NH4+][OH-] / [NH3] = 1.0 x 10^-14Since the concentration of OH- is negligible, we can assume that:
Kw = [NH4+][OH-] / [NH3] ≈ [NH4+][OH-] / [NH4+] = [OH-]Substituting Kb and Kw into the equation above, we get:
Kb x [OH-] = Kw[OH-] = Kw / Kb = 1.0 x 10^-14 / 1.8 x 10^-5 = 5.6 x 10^-10Since NH3 is only 1.1% ionized, we can assume that [NH4+] ≈ [OH-] = 5.6 x 10^-10
Using the equation for the ionization constant of NH4+, we get:
Ka = [NH3][H3O+] / [NH4+]Since NH3 is a weak base, we can assume that [H3O+] ≈ [OH-] = 5.6 x 10^-10
Substituting the values into the equation, we get:
Ka = (0.15 x 0.011)/(5.6 x 10^-10) = 3.1 x 10^-10
Finally, we can use the relationship between Ka and pKa:
pKa = -log(Ka) = -log(3.1 x 10^-10) = 9.51
Therefore, the pKa of NH4+ is 9.51.
More on pKa can be found here: https://brainly.com/question/30419524
#SPJ1